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Abstract. In repeated-game applications, where both the collusive and noncollusive out-
comes can be supported as equilibria, it is crucial for researchers to understand when each
equilibria is more likely to result. Controlled experiments have provided a selection cri-
terion for the two-player repeated prisoner’s dilemma. The theoretical selection criterion
uses game primitives to measure the set of beliefs such that an agent prefers to defect in all
rounds relative to cooperating conditionally. The set of such beliefs is large when uncer-
tainty with respect to what others will do–strategic uncertainty–is large, and the predic-
tion is that a noncooperative outcome would emerge. In this paper, we experimentally test
this model of selection and its underlying mechanism of strategic uncertainty by manip-
ulating the total number of players. Our results affirm the model as a tool for predicting
when tacit collusion is likely/unlikely to be successful. Extending the analysis, we corrob-
orate the findings and mechanism of the model, in alternative settings, and for the deci-
sions of non-human AI agents.

1. Introduction

Answering questions on which of many possible equilibria best capture economic behav-
ior is of central importance for applications with repeated interaction. For example, in
models of oligopoly in which firms interact repeatedly, both collusive and noncollusive
equilibria can arise. To better guide assumptions over equilibrium selection, and hence
policy conclusions, experimental work has uncovered basic theoretical criteria that pre-
dict the likelihood of collusion based on game’s payoffs and discount rates. Such work
has focused on the two-player indefinitely repeated prisoner’s dilemma (RPD). However,
it is unknown to what extent the uncovered predictive criteria can be used to predict col-
lusion in applications with features beyond this stark setting.

Testing whether equilibrium selection criteria hold beyond the two-player RPD presents
an important challenge: first and foremost, the selection criteria have to be adapted to
a new setting. For concreteness, let us introduce the basin of attraction for always defect,
which has been shown to organize experimental data (Dal Bó and Fréchette, 2018). The
measure takes stage-game payoffs and the discount factor as the input, and outputs the
minimum belief that the other player will cooperate such that it is worthwhile to collude.
The higher the minimum belief needed for cooperation, the wider the set of beliefs that
lead to defection, hence the name.1 A large set of beliefs leading to defection captures
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high risk of cooperation, which is why this measure is sometimes thought of as a proxy
of strategic uncertainty (i.e. uncertainty with respect to whether the other player will
cooperate). Experimental data starting with Dal Bó and Fréchette (2011) show that when
the theoretical minimum belief in cooperation is high (low), observed cooperation rates
tend to be low (high).

Now, consider a simple but practically relevant extension to an environment with more
than two players, the focus of this paper. To extend the basin-of-attraction measure to
an environment with N players the agent needs to assess the chances that more than one
other player will cooperate. A natural benchmark is to compute the minimum belief that
others cooperate by treating other agents as symmetric but independent of each other. We
formally describe such an extension in the next section, referring to it as the independent
extension. However, an experimental test of this extension in isolation may not be infor-
mative. Specifically, if the measure were not to explain the data well, the failure could be
attributed either to an intrinsic problem with the notion (for example, that strategic un-
certainty through the number of players plays no role) or to participants not treating oth-
ers’ behavior as independent. Hence, as an alternative hypothesis anchored at the other
possible extreme, we develop the correlated extension in which the beliefs over others are
perfectly correlated. If the beliefs over others are perfectly correlated, a change in N has
a null effect on behavior. In contrast, if beliefs are independent, increasing N makes it
more difficult to coordinate on a collusive outcome. Finally, it is possible that both exten-
sions have low predictive power, which could suggest that the issue is entirely unrelated
to strategic uncertainty and beliefs over others, or that the underlying correlation in be-
liefs lies somewhere in between the two extremes.

An experimental design that manipulates N in isolation would not provide strong evi-
dence to support either extension. The comparative-static prediction ofN is asymmetric—
with no change predicted under perfect correlation and a large directional change ex-
pected under full independence. Given experimental evidence on the effects of group
size in other settings (which we review below), a purely directional test overN is likely to
favor the independent extension. To provide a more stringent evaluation, in addition to
N , we introduce a second treatment variable. This second parameter, x, affects the stage-
game payoffs, increasing the temptation to defect, while also creating a directional pre-
diction under the correlated extension. In particular, our treatment parameterizations
are designed so that any increase in strategic uncertainty in the independent extension
whenN increases (fromN0 toN1), can be directly compensated for with a shift in x (from
x0 to x1). This allows us to develop a 2 × 2 design directly over the two basin extensions
that forms a stronger test: holding constant the correlated (independent) extension we
can shift the independent (correlated) extension.

Our main result is that the independent basin extension best organizes longer-run be-
havior across treatments. Not only do we observe large shifts in the predicted direction
when varying N in isolation, but we also find substantial similarity in the longer-run be-
havior when keeping constant the independent-extension prediction by varying x and N

consists of an extension of the notion of equilibrium selection described in Harsanyi and Selten (1988) and
was first proposed by Blonski and Spagnolo (2015).
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in opposing directions (here from {N0,x0} to {N1,x1}). However, the independent exten-
sion does not predict all measures of cooperation equally well. Although it succeeds in
measuring ongoing cooperation, which may be the most relevant for many applications,
there are distortions in the quantitative predictions of initial cooperation that captures
intentions to collude.

Strategic uncertainty regarding the other players’ actions is put front and center in our
main treatments as the driver of equilibrium selection. Hence, if strategic uncertainty is
the causal mechanism, removing or reducing doubts about others’ play should make the
model’s predictions moot. We pursue this idea in an additional set of treatments in which
we allow for pre-play communication but where the chosen parameterization makes it
difficult to collude. Participants are given the opportunity to exchange free-form mes-
sages before the game, a feature that can be used to reduce the uncertainty about the in-
tentions of others (see Kartal and Müller, 2018). For the same experimental parameteri-
zation without pre-play communication, we observe ongoing cooperation rates below one
percent. On the contrary, the effect of adding communication shifts behavior to the other
extreme: with initial (ongoing) cooperation rates of 95 (80) percent.2 Given these results,
we conclude that strategic uncertainty is the causal channel. In addition to mechanism
validation, our results here clearly outline the limitation of the basin of attraction as a
model for understanding tacit collusion: it fails to provide useful guidance when collu-
sion is more explicit.

While we find that the basin-of-attraction model makes poor predictions once strategic
uncertainty is removed via pre-play communication, it predicts well across a number of
extensions in which strategic uncertainty is not dissipated. For a second extension, we
test whether an equilibrium is sticky by examining a situation in which the primitives
of the game change within a session. Specifically, we introduce a change in N (from
N0 = 4 to N1 = 2, and vice versa) halfway through an experimental session. If selected
equilibria are sticky—because so are the beliefs over others—then a change in N will
not affect behavior, and the selection model becomes moot. However, if the strategic
uncertainty is reset with a change in the environment, an increase (decrease) in N will
decrease (increase) the uncertainty over others resulting in a change in behavior. Our
findings indicate that there is no stickiness in the long run. Specifically, behavior adjusts
after a change in N , moving with experience toward the levels of cooperation observed
in sessions with fixed N . In summary, this suggests that changes in strategic uncertainty
lead to changes in behavior in a predictable way, with little evidence of stickiness.

The third extension weakens the requirement for successful cooperation. Whereas our
main treatments require joint cooperation by all N players for a stable cooperative out-
come, here, we weaken this requirement so that even if only half of the players in our

2As an additional check that the provided communication channel is not driving our results separate from
equilibrium coordination (for example, increasing other regarding concerns) we implement a second treat-
ment with communication in which the collusive outcome is not an equilibrium. Here, we find that com-
munication does not lead to successful collusion. As such, communication has an effect only when there is
a clear motive for selection of the equilibrium.
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N = 4 treatment cooperate, a success will ensue. Despite the weakened condition for suc-
cess (only two cooperators, versus all four in our original treatments) the strategic uncer-
tainty predicts lower cooperation, as coordination over which two players cooperate be-
comes harder. Even though the structure for successful cooperation is different, the evi-
dence is again broadly consistent with the theoretical prediction.

Taking a step back, the main goal of our paper is to help construct an empirical criteria
for equilibrium selection in repeated games. In games with a large set of equilibria, such
a tool can be very useful to evaluate policy recommendations and to use such models
for predicting behavior. However, a clear shortcoming of any experimental paper such
as ours is that conclusions are specific to the chosen environment and parameterizations.
Ideally, one would want to evaluate the criterion for equilibrium selection in a large set
of repeated games, and in each set for several possible parameterizations. While this goal
is outside the scope of the paper, we make two final contributions that may help further
evaluate empirical criteria of equilibrium selection.

First, we introduce a methodology that allows for a more expansive exploration without
running an infeasible number of experimental conditions. We show that the experimental
results for both the previous RPD literature and our main environments with N > 2 can
be replicated with artificial intelligence algorithms (AIAs) that companies use for pric-
ing decisions (Calvano, Calzolari, Denicolo, and Pastorello, 2020; Asker, Fershtman, and
Pakes, 2021). Though still beyond the scope of this paper for a full exploration, we out-
line how such AIA driven experimental conditions can be used in future research both to
explore the limitations of theoretical selection devices like the basin, but also as an aide
in designing treatments for future studies. Given that we find a qualitative and a quan-
titative match between the long-run behavior of AIAs and our lab participants, the for-
mer can be used to predict behavior of human subjects in counterfactual environments
that are not directly studied in the laboratory. Although not as analytically tractable as
our basin calculation—which provides closed-form solutions for the direction of an ef-
fect and any interactions—such AIAs can be used to expand the scope of experimental
studies if partially validated on the narrower domains studied within the laboratory. Fi-
nally, while we believe that studying the extension of analytic selection criteria such as
the basin to N > 2 is of natural importance, we also offer a proof-of-concept method for
validating and proving extensions to other domains.

1.1. Literature. This paper is connected to several strands of the literature. Our design is
based on the recent consolidation of the experimental RPD literature presented in Dal Bó
and Fréchette (2018). While one of our baseline treatments replicates a standard finding
in the literature,3 our core contribution is to generalize the equilibrium selection model
outlined in the Dal Bó and Fréchette (2018) meta-study, adding an additional source of
strategic uncertainty: the number of players, N .4 Whereas the literature has developed

3As pointed out in Berry, Coffman, Hanley, Gihleb, and Wilson (2017) experimental replications are rare
as the papers often leave out details of their experimental design.
4The extension of the notion of equilibrium selection described in Harsanyi and Selten (1988) to the RPD
was first proposed by Blonski and Spagnolo (2015) (with further details in Blonski, Ockenfels, and Spag-
nolo (2011)) and was first shown to organize data by Dal Bó and Fréchette (2011). See also Fudenberg, Rand,

4



this model for explanatory purposes, our approach is both to expand the model to a new
setting, but also to test it as the core experimental object.

Our generalization of the strategic uncertainty model is carried out in two ways. The first
extension (and most standard, given its use of independent beliefs) formalizes a distinct
source of strategic uncertainty from the payoff-based source in the meta-study. An alter-
native extension (based on fully correlated beliefs) reflects a null effect, that the newly in-
troduced source has no effect. As such, our generalization offers a potentially profitable
design approach for future research examining other channels for strategic uncertainty
effects—asymmetries in the action space or payoffs, the effects of sequentiality, etc.5

Our environment also allows us to better distinguish between the empirical measures
linked to the selection model. That is, using literature-level data assembled by Dal Bó and
Fréchette (2018), we show that the two-player RPD strategic uncertainty model is suitable
to predict both initial and ongoing cooperation.6 However, with more than two players,
this is no longer the case. Here, we demonstrate that the strategic uncertainty model
is better suited to predict successful ongoing collusion rather than initial intentions to
collude.7

This paper is part of a broader literature that seeks to understand and document regular-
ities in equilibrium selection, in particular, regularities that are amenable to theoretical
modeling. To this end, the strategic-uncertainty measure that we examine is particularly
promising, as the equilibrium objects required for calculation are computationally sim-
ple: the stationary noncollusive equilibrium and the history-dependent collusive equilib-
rium. In environments beyond the RPD in which the equilibrium outcomes are held con-
stant, the model can be similarly extended per our illustration with a move to N players.
However, in more complex environments with changing sets of equilibria, the constraint
to two focal equilibria in the strategic uncertainty model may lose validity and/or raise
questions as to which two strategies are focal. Examples of more-complex settings in-
clude dynamic games in which the stage environment changes across the supergame, and
the space of strategies becomes substantially larger. Vespa and Wilson (2020) focus on
a horse-race examination of which two equilibria are focal (from a wider set of possible
alternatives) to rationalize behavior in dynamic games. In this paper, we identify a sim-
ilar strategic uncertainty measure constructed around the most-efficient Markov perfect
equilibrium and the best symmetric collusive equilibrium. A strategic-uncertainty model

and Dreber (2010) for an examination of the effects with imperfect monitoring and Kartal and Müller (2018)
for a test of a selection theory based on individual heterogeneity in preferences over dynamic strategies.
5See Ghidoni and Suetens (2022) and Kartal and Müller (2018) for experimental examinations of the effect
of sequentiality in RPD settings through a reduction in strategic uncertainty.
6With two players, but when sequential moves are allowed, there is additional variation for identification.
Ghidoni and Suetens (2022) also find that ongoing measures are better predicted than initial rates.
7Ongoing cooperation is a measure that is likely to be more relevant for empirical applications where
collusion may be a worry. For instance, from Harrington, Gonzalez, and Kujal (2016), page 256: “(...)
collusion is more than high prices, it is a mutual understanding among firms to coordinate their behavior.
(...) Firms may periodically raise price in order to attempt to coordinate a move to a collusive equilibrium,
but never succeed in doing so; high average prices are then the product of failed attempts to collude.”
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based on these strategies predicts behavior, where these strategies dovetail with repeated
game strategies in the simpler environment studied here.8

An experimental literature on behavior in oligopolies documents that collusion clearly
responds to the number of players. Both Cournot (Huck, Normann, and Oechssler, 2004;
Horstmann, Krämer, and Schnurr, 2018) and Bertrand settings (Dufwenberg and Gneezy,
2000) indicate that as the number of players increases collusion becomes less likely, of-
ten as soon as N exceeds two.9 We contribute to this literature on two margins. First,
the mentioned papers focus on out-of-equilibrium behavior in settings with a finite-time
horizon, and a subsequently unique theoretical prediction. In contrast, we examine how
changes to N affect outcomes in an infinite-horizon with both collusive and noncollusive
equilibria. Second, and crucially, our focus is not only on the qualitative directional ef-
fects of N , but foremost on validating the model suitability for studying strategic uncer-
tainty. Specifically, the model, if validated, will allow us to understand the extent of sub-
stitutability between game primitives, which can help to predict the directional effects
of more-nuanced, multi-dimensional counterfactuals. Clearly, any equilibrium-selection
notion suggested for such a task requires a great deal of scrutiny. However, our findings
suggest some optimism for future research.

Our work is also related to the experimental literature on mergers that manipulates the
number of players. As surveyed by Goette and Schmutzler (2009), some experiments deal
with “pseudo-mergers,” where a subset of the original firms remains in the market (see,
for example, Huck, Konrad, Müller, and Normann, 2007). Other experiments implement
“real mergers,” where mergers introduce other changes in the market beyond N (Davis,
2002). Our contribution is that the strategic-uncertainty measure can predict counter-
factual behavior in both settings. Another discussion in this literature is whether merger
effects are evaluated within the same group of participants (within-subject designs) or
across different groups (between-subject designs). In this paper, while our main treat-
ments rely on between-subject identification, we also conduct within-subject sessions at
the same parameterization, demonstrating that although there can be meaningful short-
run differences, with enough experience the results align.10

The effects of communication devices as a bolster for collusion are well established in
the experimental literature. As surveyed in Cason (2008) and Harrington, Gonzalez, and
Kujal (2013), more-structured, limited forms of communication usually result in small,
temporary collusive gains, where free-form communication generates large, long-lasting

8Work on equilibrium selection in dynamic games builds on recent contributions in this area. For example:
Battaglini, Nunnari, and Palfrey (2012, 2016); Agranov, Frechette, Palfrey, and Vespa (2016); Kloosterman
(2019); Vespa and Wilson (2019); Rosokha and Wei (2020); Salz and Vespa (2020); Vespa (2020).
9See also references in Potters and Suetens (2013) for similar findings.
10Differences in behavior can be stickier if changes are small or introduced gradually. Weber (2006) shows
that gradually increasing the number of players in a coordination game leads to different results relative to
a situation in which the game starts with a large group. The gradual introduction of changes to the payoff
primitives has also been found to have effects in repeated games; see Kartal, Müller, and Tremewan (2017).
These results suggest that the selection notions we are examining are relevant for “large” counterfactual
changes, and where future research can help clarify how to integrate “large” into a predictive model of
selection.
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effects.11 For these reasons, in one of our extensions we examine unrestricted chat mes-
sages as a strong coordination device. Our collusive results indicate that the domain for
our strategic-uncertainty measure based on tacit collusion does not include environments
where explicit collusion is allowed. However, we show that there are clear limits on the
effects of explicit collusion, and these limits are directly predicted by theory. Using a
change to the payoff primitives (here the discount rate) we make collusion a knife-edge,
nonrobust equilibrium, and show that the effects of communication dissipate entirely.

While much of the literature on repeated games studies the standard two-player RPD,
there is a large literature studying a canonical N -player social dilemma: the voluntary
contribution public-goods game (see Vesterlund, 2016, for a survey). Although much
of this literature focuses on finite implementations, one notable exception is Lugovskyy,
Puzzello, Sorensen, Walker, and Williams (2017). Similar to our paper, the authors use
experimental variation over both N and the payoff primitives (in their case, the return
to the group contribution). However, this is done with a different end goal: to identify
the isolated effect of the stage game’s MPCR. Instead, our objective is to isolate strategic
uncertainty and test a predictive theory of selection.

Beyond social dilemmas, our paper is also related to the literature on coordination games
(see Devetag and Ortmann, 2007, for a survey). The strategic-uncertainty measure ex-
amined in our paper works because the RPD has a stag-hunt normal-form representa-
tion (Blonski and Spagnolo, 2015), adapting the risk-dominance notion for one-shot co-
ordination games as in Harsanyi and Selten (1988).12 Risk dominance (and the cardinal
implementation through the measure of strategic uncertainty) has been shown to have
substantial predictive content in simple coordination games with trade-offs over payoff-
dominance and risk-dominance (see Battalio, Samuelson, and Van Huyck, 2001; Brandts
and Cooper, 2006, and references therein). Therefore, strategic uncertainty has demon-
strated its usefulness as a theoretical selection device in both static and repeated games.
Our contribution to this literature is to design an experiment that will explicitly test and
show how the predictive effects extend further, to multiplayer infinite-horizon settings.

2. Generalizing the Basin of Attraction

Developing empirical criteria for equilibrium selection in games in which collusion is
possible requires two measures: one theoretical, one empirical. On the theory side, we
need a prediction, a model that maps the primitives of the game into a scalar where up-
ward/downward movements are clearly interpretable as increasing/decreasing the like-
lihood of collusion. On the empirical side, we need a precise target against which the the-
oretical notion can be contrasted and validated. This empirical measure should examine
a behavior that differs starkly under the collusive and noncollusive equilibria.

11For further details on the effect of communication in repeated games with an unknown time horizon,
see Fonseca and Normann (2012), Cooper and Kühn (2014), Harrington, Gonzalez, and Kujal (2016), and
Wilson and Vespa (2020).
12The difference in our setting is that neither total payoffs nor strategic choices are directly provided to
the participants, as these are extensive-form objects. Instead, they are provided with the stage-game pay-
offs/actions, where strategies (such as grim trigger or tit for tat) and gross payoffs are endogenously formu-
lated.
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We begin this section by summarizing the progress made towards validating a theoretical
prediction in the two-player RPD literature. The theoretical notion here is the size of
the basin of attraction for always defect. The focal outcome measures are the initial and
ongoing cooperation rates of individual players. Then, we extend this framework by
introducing a new source of strategic uncertainty, the number of players N—both for the
theoretical and empirical measures.

2.1. Two-players. Consider an RPD with a discount rate δ ∈ (0,1). In each period t =
1,2, . . . players i ∈ {1,2} simultaneously select actions ai ∈ A :={(C)ooperate, (D)efect}.
The period-payoff for player i is a function of both players’ choices, πi(ai , aj), where all
symmetric PD stage-games can be expressed in a compact form by normalizing all payoffs
relative to the joint-defection payoff π0 := π(D,D), and rescaling with the relative gain
from joint cooperation: ∆π := π(C,C) − π0.13 Defining scale and normalization in this
way, the PD stage-game can be expressed with two parameters g and s for the different-
action payoffs πi(D,C) = π0 + (1 + g)∆π and πi(C,D) = π0 − s ·∆π. The parameters g > 0
and s > 0 thereby capture the relative temptation- and sucker-payoffs, respectively.

The PD stage-game payoffs can be used as primitive inputs into a risk/reward model of
collusion based upon strategic uncertainty. Here, strategic uncertainty is distilled into a
decision between two focal extensive-form RPD strategies.14

(i) The always defect, αAll-D, which plays the stage-game Nash in all rounds (the unique
MPE of the game).15

(ii) The grim trigger, αGrim, a strategy that begins by cooperating but switches to the
always defect after observing any defections in past play (the best-case collusive
SPE).16

As functions of the observable history ht, these two strategies are given by:

αGrim(ht) =
{
C if t = 1 or ht = ((C,C), (C,C), . . . , (C,C)),
D otherwise;

αAll-D(ht) =D.

Strategic uncertainty in the two-player RPD is measured through the size of the basin
of attraction for always defect. The model considers the expected reward for player i
when uncertainty on the other player j is represented by a believed strategy mixture

13More exactly, game payoffs π can be transformed as π̃ = (πi −π0)/∆π to measure all payoffs relative to
joint defection in units of the optimization premium.
14In the Online Appendix E, we describe why it is useful and not very restrictive to focus on these two
strategies.
15A Markov strategy is history independent, removing any conditioning on past play. A Markov-perfect
equilibrium (MPE) is a subgame-perfect equilibrium (SPE) in which agents use Markov strategies. In an
RPD, if choices are forced to be history independent then there is a unique equilibrium: playing the stage-
game Nash equilibrium in all periods.
16The strategy here is ‘best case’ in three senses: (i) It can support the best-case outcome. (ii) It uses the
harshest possible punishment, and so can support collusion at smaller values of δ than any other strategy.
(iii) Any realized miscoordination is minimal and resolves in a single round.
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p·αGrim⊕(1−p)·αAll-D. The basin for always defect is defined as the set of beliefs p for which
the player i receives a higher expected payment from αAll-D than αGrim. The always-defect
belief basin is therefore the interval [0,p?(g,s,δ)], where the critical-point/interval-width
is given by:17

(1) p?(g,s,δ) ≡ (1− δ) · s
δ − (1− δ) · (g − s)

.

The size of the basin p?(g,s,δ) has a clear interpretation for strategic uncertainty: for any
belief p > p?(g,s,δ) that the other player uses the collusive strategy αGrim, the player does
strictly better choosing αGrim; for any belief p < p?(g,s,δ), the player does strictly better by
selecting the noncollusive strategy αAll-D. As such, the smaller p? , the lower the strategic
uncertainty surrounding collusion. Moreover, the cardinal basin-size measure directly
implies the ordinal risk-dominance relationship between the two strategies. If p?(g,s,δ) <
1/2 the collusive strategy αGrim risk-dominates αAll-D, and vice versa. Henceforth, by ‘basin
of p? ’ we mean the maximal belief in the other players’ cooperating for which the strategy
αAll-D is optimal.

Equation (1) represents an easy-to-derive theoretical relationship between the payoff prim-
itives of the game (here g, s, and δ) and a critical strategic belief over the other player’s
likelihood of collusion. The hypothesized relationship is monotone, where the higher
p? , the lower the probability of cooperation, allowing unambiguous directional predic-
tions for any counterfactual change in the primitives. The posited mechanism within this
model is also clear cut: strategic uncertainty introduces a risk/reward trade-off for collu-
sion attempts, which can be solved using standard economic analysis. This has two ben-
efits. First, we can test the underlying strategic-uncertainty mechanism through other
channels outside of the model, where we will do exactly that in an extension examining
coordination devices. Second, the necessary assumptions for extending this model to an-
alyze alternative sources of strategic uncertainty are straightforward.

We now turn to the empirical criteria used to validate this theoretical measure. As a sum-
mary of the RPD literature, we focus on the recent meta-study on the two-player RPD
(Dal Bó and Fréchette, 2018). One of our main results shows that the scalar basin-size
measure of strategic uncertainty is highly predictive of behavior, though with a nonlinear
relationship. We illustrate this relationship in Figure 1 for two empirical outcome mea-
sures. In both panels of Figure 1 the theoretical measure of strategic uncertainty (the size
of the basin p?) is presented on the horizontal axis. The empirical outcome measures are
presented on the vertical axes. In Panel (A) we present the results for initial cooperation in
the supergame, a measure that tracks collusive intentions at the individual level; in Panel
(B) we present results for ongoing cooperation, choices in rounds two and beyond, a mea-
sure of the extent to which collusion attempts are successful. The solid line in both pan-
els indicates the predicted cooperation rate at each p? from the piecewise-linear probit

17In the case that the strategy (αGrim,αGrim) is not an SPE of the repeated game, the basin size for always
defect is defined as p?(xT ,xS ,δ) = 1.
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(a) Initial cooperation
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(b) Ongoing cooperation

Figure 1. Meta-study relationship: strategic uncertainty and RPD cooperation
Note: Figures show estimated effects and 95-percent confidence intervals for initial/ongoing cooperation in
RPD meta-study (Dal Bó and Fréchette, 2018). Each point indicates a separate treatment.

estimates; the shaded region represents the 95 percent confidence interval for the predic-
tion (clustering by treatment).18

For both initial and ongoing cooperation, the same pattern is found: a consistently low
cooperation level when always-defect is risk dominant (p? > 1

2 ); and a significantly de-
creasing relationship with p? when collusion is risk dominant (p? < 1

2 ). Specifically, Fig-
ure 1(A) illustrates Results 3 and 4 from Dal Bó and Fréchette (2018) that pertain to ini-
tial cooperation and Figure 1(B) portrays a relationship between strategic uncertainty and
ongoing cooperation.

The theoretical model used in the basin construction posits a connection between initial
and ongoing cooperation. If collusion functions through conditional cooperation with
grim-trigger punishments, the expected ongoing cooperation rate is the probability that
the players jointly cooperate in the first round: the initial cooperation rate squared. Thus,
if cooperation were effectively governed by the grim trigger, both measures of empirical
cooperation would carry the same information. Since, in fact, grim-trigger punishments
have been documented to be used by subjects (for example, Dal Bó and Fréchette, 2011),

18We estimate the probit regression using meta-study data from 996 participants across 18 experimental
treatments, where we focus on late-session cooperation (supergames 16–20, the data we focus on in our
experiments). Individual-level cooperation decisions are the left-hand side variable, where the basin size
enters the right-hand side in a piecewise-linear fashion around the risk-dominance dividing point. The
econometric specification is motivated by Dal Bó and Fréchette (2018, Table 4); however, to enforce level-
continuity in the estimated relationship, we remove a degree of freedom from their specification that al-
lowed a discontinuity at p? = 1/2.
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data from the RPD do not provide enough variation to identify whether theoretical no-
tions track one of these measures more closely. Consequently, with only two players it is
challenging to identify the extent to which the strategic-uncertainty measure predicts ini-
tial intentions versus successful coordination.19 However, as we will show below, adding
more players provides additional variation that will allow us to differentiate between the
two measures of cooperation.20

2.2. Extending to N > 2. We now extend the strategic-uncertainty model to an N -player
environment. The core extension is intuitive: instead of considering one other player
choosing a mixture p · αGrim ⊕ (1 − p) · αAll-D, we consider N − 1 other players choosing a
strategic mixture.

Our goal in this section is to introduce two simple ways to construct the extension to
N > 2. Perhaps the most standard approach is to assume that each player treats the de-
cisions of the other players to play αGrim as independent. An alternative approach is to
assume that the choices of all other N − 1 players are perfectly correlated.21 In the first
approach, increasing N increases strategic uncertainty because the players are indepen-
dent, and adding one more player adds one more person whose behavior is unknown. In
the second approach, strategic uncertainty is not affected by N , but continues to depend
on other model primitives, as discussed for the two-player RPD. We focus on these two
extreme cases of full independence and full correlation for the following reasons. First,
they allow us to produce an experimental design (introduced in the next section) that has
stark behavioral predictions. Second, both stances are simple to compute in settings be-
yond our environment.22

To outline the extension and set up our design, we consider a family of symmetric social
dilemmas that nest the standard two-player RPD. However, to maintain a constant 2× 2
stage-game representation for all N , our family of dilemmas makes use of an aggregate
(and deterministic) signal of the other agents’ actions. All players i = 1, . . . ,N continue
to make a binary action choice ai ∈ A ≡ {C,D}, but their payoffs do not vary with (and
they do not receive feedback on) the separate actions of the other N − 1 players. Instead,
payoffs are determined by the own-action ai and a deterministic binary signal σ (a−i) ∈
{S(uccess),F(ailure)} of the actions of the others, a−i . In particular, the generic player i’s

19For a setting that achieves this with sequentiality of moves, see Ghidoni and Suetens (2022).
20For any setting in which collusion requires N agents to initially cooperate to produce ongoing coopera-
tion, the relationship is simply given by initial cooperation rate to the N -th power. Separate identification
between the two measures occurs upon comparing treatments with different values of N .
21Notice that both extensions of the measure capture beliefs over supergame strategies (i.e a full specifica-
tion of what to do in every possible round). In the strategies underlying the measure, actions will be per-
fectly correlated in all rounds but the first. For instance, consider αGrim. Either all N players successfully
coordinate on cooperation, or after a failure in round one, the punishment path is triggered with allN play-
ers choosing defect in subsequent rounds. As such, the independent and correlated models only differ in
the potential for correlation in play in the very first round.
22Clearly, one can define an intermediate hypothesis with an extra parameter that captures the extent to
which beliefs are independent (with complementary probability on the extent to which beliefs are corre-
lated). In Section 4 we will discuss this alternative in further detail and report an estimate of such a pa-
rameter.
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stage-game payoff and signal function are given, respectively, by:

πi
(
ai ,σ

)
=


π0 +∆π if ai = C,σ = S,
π0 +∆π · (1 + x) if ai =D,σ = S,
π0 −∆π · x if ai = C,σ = F,
π0 if ai =D,σ = F;

σ (a−i) =
{
S if aj = C for all j , i,
F otherwise.

These choices lead to a symmetric game, where payoffs can be summarized with a 2 × 2
table over: (i) the own action C or D; and (ii) the signal outcome, an S signal if the other
N − 1 players jointly cooperate, or an F signal if at least one other player defects. The
exact payoffs (with the same implicit scale ∆π and normalization π0 as before) implement
a PD-like environment where payoff-based strategic uncertainty is collapsed to a single
parameter x.23

The success/failure signal is a deterministic function of the actions of the N − 1 other
players, corresponding to the standard RPD two-player game. The choice for the signal
function σ (·) maximizes the coordinative pressure, duplicating a Bertrand-like tension:
collusion is successful only when all other N − 1 players cooperate.24

Ignoring the scale and normalization of the game (held constant in our experiments with
∆π = $9 and π0 = $11) the repeated games we examine are summarized by three primi-
tives: (i) The relative cost of cooperating, x. (ii) The number of players, N . (iii) The con-
tinuation probability, δ. Our experiments fix δ = 3/4 in all but one diagnostic treatment in
Section 5. This leaves us with two key experimental parameters: the relative cost x (ac-
tual cost X = x∆π) and the number of participants N .

In building a model of strategic uncertainty for arbitrary N , we use a symmetric belief
over the others’ choices. That is, we assume each player chooses a mixture p ·αGrim ⊕ (1−
p) · αAll-D over the two strategies.25 Our family of social dilemmas require cooperation
from allN players for everyone to get an S signal. Thus, the strategic uncertainty reduces
to the probability that the other N −1 players jointly coordinate on the collusive strategy,

Q (N ) = Pr {N − 1 others all choose αGrim} .

23In the meta-study notation this is implemented with s = g = x. This single-parameter formulation is
equivalent to the Fudenberg, Rand, and Dreber (2010) benefit/cost formulation, where their benefit/cost
ratio parameter (b/c) is given by (1+x)/x here.
24In Section 5, we introduce a manipulation in which only two of four players are needed for the coopera-
tive outcome to occur. If cooperative outcomes can be achieved with some players not cooperating, a free-
riding problem emerges. In our main treatments, we abstract from this issue by having efficient outcomes
only if all players cooperate.
25For the N -player dilemma we define the grim-trigger strategy with imperfect-signals as:

αGrim(ht) =

C if t = 1 or ht = ((C,S), (C,S), . . . , (C,S)),
D otherwise.
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In every other case, at least N − 1 players will receive an F signal and the punishment
path will be triggered.

Identically to the case of two players, the critical belief Q?(N ) is given by the point of in-
difference between the amount given up with certainty from a single round of coopera-
tion, x ·∆π, and the continuation gain from collusion, δ

1−δ ·∆π, obtained with probability
Q(N ). The critical belief is therefore given by:

Q? (N ) =
(1− δ)
δ

x,

where the RHS is identical to the two-player construction in Equation (1) for x = g = s.

Next, we need to relate the joint cooperation of the other N − 1 players to the probabil-
ity p that every other player individually attempts to collude. However, even though we
have specified the marginal belief distribution and assumed symmetry, we must still re-
solve the relationship between the joint and marginal distributions: the extent to which
beliefs are correlated. In particular, our design focuses on two extremes. The ‘standard’
extension in which beliefs are fully independent; and an alternative/null-effect model in
which beliefs are perfectly correlated.26 Assuming perfect correlation for the other N − 1
agents, joint and individual probabilities are identical, Q (N ) = p, and so the extended
critical belief (and correlated model outcome) is given by:

(2) p?Corr.(x) =
1− δ
δ
· x.

In contrast, when beliefs are independent, we have Q (N ) = pN−1, and the critical belief
(and independent-model extension) is given by:

(3) p?Ind.(x,N ) =
(1− δ
δ
· x

) 1
N−1
≡

(
p?Corr.(x)

) 1
N−1 .

Obviously, when N = 2 the basin measures in Equations (2) and (3) are identical, match-
ing the standard construction. However, for N > 2 the two measures of strategic un-
certainty are distinct, where the standard model extension under independence also de-
pends on the group-size N .

3. Experimental Design

The basin of attraction for always defect serves as our measure of strategic uncertainty.
Ceteris paribus, the greater the uncertainty on successful strategic coordination, the more
likely the subject is to take refuge in a safer strategy—in the case of an RPD game, the
stage-game Nash outcome of defecting.

Extending the environment to N > 2 raises a question of how strategic uncertainty is af-
fected by N . If others’ behavior is highly correlated, adding players but holding the pay-
offs constant will do little to affect the behavior. In contrast, in a more-standard exten-
sion in which beliefs over the other players are independent, p?Ind. will model the strate-
gic uncertainty. Under this extension, we will be able to use shifts in p?Ind. to understand

26See Cason, Sharma, and Vadovič (2020) for an example of correlated beliefs that arise where indepen-
dence would be the standard prediction.
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changes in the selected behavior. While one implication is that additional players ceteris
paribus reduce collusion, a deeper implication of the model is to help us understand sub-
stitution effects across the two sources of strategic uncertainty, x and N .

Our experimental design attempts to untangle the effects of strategic uncertainty. The
aim of the design is to embed comparative-static tests on the effect of N (and thus rule
out the p?Corr. null-effect model), but also to examine the possible substitution effects by
constructing perfect substitution treatments with the p?Ind. model. We achieve this with a
series of experimental implementations of the N -player two-action–two-signal repeated
game outlined above. In particular, the first part of our design aims to distinguish and
separate between the two extremes of independence and perfect correlation, leveraging
the theoretical relationships derived above.

While we cannot directly manipulate strategic uncertainty—as the basin-size measures
are indirect, theoretical relationships derived from the primitives—Equations (2) and (3)
allow us to implicitly manipulate each measure through shifts in x and/or N . Increases
in x increase the strategic uncertainty in both models: higher costs of cooperation require
a greater belief that the other(s) are cooperating. In contrast, increases in the number of
players N only increase strategic uncertainty for the independent-basin measure, inter-
acting with x in a nonlinear manner.

Using Equations (2) and (3), the two notions can be varied in isolation. As such, it is
possible to construct a 2 × 2 design that orthogonally varies each strategic-uncertainty
measure. Next, we outline our design, which we also summarize in Table 1.

Panel (A) of Table 1 illustrates our first treatment dimension, which manipulates the
payoff cost of cooperating X = x · ∆π, where ∆π = $9. The two values of X—a high
temptation of $9 (illustrated on the left, x = 1), and a low temptation of $1 (on the right,
x = 1/9)—lead to two payoff environments over own-actions and the signals.27

Our design also manipulates the number of players N , captured in the column headings
of Panel (B) in Table 1. In total, we create four treatment environments, each defined by
an (N,X)-pair. The two rows of Panel (B) indicate how the choices over X and N affect
the basin-size measures of strategic uncertainty under the correlated and independent
extensions.

To manipulate each basin-size measure separately, our design takes
(
N=2
X=$9

)
as its starting

point. For this treatment, the values for both the independent and correlated basin-size
measures are the same: p?0 = 0.33. Holding the relative cooperation cost fixed and increas-
ing the number of players to N = 4 do not affect the correlated measure in Equation (2).
However, a shift to N = 4 increases the independent-basin measure to p?0 +∆p?Ind. = 0.69.

Now, consider the manipulation of X. Comparing
(
N=4
X=$1

)
with

(
N=2
X=$9

)
, we hold constant

the independent-basin measure at p?0 = 0.33. The shifts in both X and N have perfectly
substituting effects in Equation (3). However, the same change in both variables under
the correlated basin has a substantial effect, as the change in N does not offset the change
in X. As such, the correlated-basin measure is lowered to p?0 − ∆p

?
Corr. = 0.04. Finally,

27See Figure C.1 in the Online Appendix C for representative lab screenshots.
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Table 1. Experimental design

Panel A. Stage-game
payoffs

X = $9 X = $1

σ (a−i) = S σ (a−i) = F σ (a−i) = S σ (a−i) = F

Coop., πi(C,σ ) $20 $2 $20 $10
Defect, πi(D,σ ) $29 $11 $21 $11

Panel B. All-D Basin
Size

X = $9 (x = 1) X = $1 (x = 1/9)

N = 2 N = 4 N = 4 N = 10

Cor. basin, p?Cor.(x) p?0 p?0 p?0 −∆p
?
Cor. p?0 −∆p

?
Cor.

[0.33] [0.33] [0.04] [0.04]
Ind. basin, p?Ind.(x,N ) p?0 p?0 +∆p?Ind. p?0 p?0 +∆p?Ind.

[0.33] [0.69] [0.33] [0.69]

Sessions 3 3 3 2
Subjects 60 60 72 60

Panel C. Meta-study
predictions

p?0 Marginal effect from:

[0.33] Basin increase to [0.69] Basin decrease to [0.04]

Initial coop. (t = 1) 0.50 −0.26 +0.35
Ongoing coop. (t > 1) 0.37 −0.21 +0.50

Note: Meta-study predictions in Panel (C) correspond to estimates from the treatment-clustered probits
illustrated in Figure 1.

in the
(
N=10
X=$1

)
treatment we complete the 2 × 2 design over the two basin-size measures.

Comparing
(
N=4
X=$1

)
with

(
N=10
X=$1

)
, we hold constant the correlated basin at p?0−∆p

?
Corr. = 0.04,

as it does not depend on N . However, more players increase strategic uncertainty in the
independent basin. In particular, our parameterization matches the independent-basin
sizes for

(
N=10
X=$1

)
and

(
N=4
X=$9

)
at p?0 +∆p?Ind. = 0.69.

Through variation in the primitives X and N , our design thereby generates four corre-
lated/independent basin measure pairs with a 2× 2 structure:28(

p?Corr.,p
?
Ind.

)
∈
{
p?0 ,p

?
0 −∆p

?
Corr.

}
×
{
p?0 ,p

?
0 +∆p?Ind.

}
:=

{
0.33,0.04

}
×
{
0.33,0.69

}
.

This design achieves the goal of orthogonal variation over the two basin measures. How-
ever, the above parameterization was also chosen so that the shifts in each dimension are
expected to have quantitatively large effects. Through the Dal Bó and Fréchette (2018)
meta-study we generate level predictions for the behavioral effects of each directional

28We note that our choices of ∆π = $9 and δ = 3/4 were motivated by simplicity of the presentation: our
results are integer-valued for both N and X. Our design over the basin measures is more-exactly given by:(

p?Corr.,p
?
Ind.

)
∈
{
3−1,3−3

}
×
{
3−1,3−1/3

}
.
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change. Our design generates three basin-size measures: p?0 = 0.33, p?0 −∆p
?
Corr. = 0.04,

and p?0 +∆p?Ind. = 0.69. Using the probit-model estimates illustrated in Figure 1 we make
quantitative predictions for the cooperation rates under each basin-size measure. These
predictions are indicated in Panel (C) of Table 1. The first column reports the initial and
ongoing cooperation rates expected at p? = 0.33.29 The next two columns indicate the ex-
pected treatment effect from a shift in the strategic uncertainty from p? = 0.33 to either
p?0 −∆p

?
Corr. = 0.04, or p?0 +∆p?Ind. = 0.69.

We formalize the two competing hypotheses as:

Correlated-Basin/Null-effect Hypothesis. Cooperation increases as we decreaseX, but there
is no effect as we vary the number of players N .

Independent-Basin Hypothesis. Cooperation decreases as we increase X and/or N . More-
over, the substitution effects between X and N indicate no effect on cooperation if we decrease
X and increase N to hold constant the p?Ind. measure of strategic uncertainty.

That is, consider now the predictions under the standard independence-based extension
of strategic uncertainty. In treatments

(
N=2
X=$9

)
and

(
N=4
X=$1

)
the independent basin size is

0.33, and it increases to 0.69 in treatments
(
N=4
X=$9

)
and

(
N=10
X=$1

)
. If the strategic uncertainty

relationship estimated from the two-player RPD meta-data is perfectly extrapolatable to
our setting, we should expect: (i) A reduction of 26 (21) percentage points in initial (on-
going) cooperation across the treatment pairs, caused by an increase in strategic uncer-
tainty. (ii) A null effect on cooperation within each treatment pair, reflecting the designed
perfect substitution across X and N in the independence-based measure.30

Notice that our hypotheses are silent with respect to which of the two outcome measures,
initial and/or ongoing cooperation, we are supposed to match. The two measures have
different interpretations—whereas initial cooperation captures intentions, ongoing coop-
eration reflects successful coordination. In the case of the two-player RPD, Figure 1 shows
that the basin size tracks both cooperation measures relatively well and that the effects
are hard to disentangle. Through N , we are able to generate additional variation in the
theoretical relationship between initial and ongoing cooperation variables that separates
the two relationships on another dimension. An advantage of this design is that it will
allow us to identify the measure better predicted by either of the two basin-size models.

Experimental Specifics. In our experiment, we used a between-subject design over the
four distinct treatments described in Table 1. Participants for each treatment were re-
cruited from the undergraduate population at the University of Pittsburgh, and each par-
ticipated in only one session. We recruited a total of 584 participants, 252 for the first
four treatments and 332 for the extensions that we outline in Section 5. Three sessions
29All predictions are based on late-session meta-study data (supergames 16–20).
30Alternatively, under a null-effect fromN , given by the correlated-basin measure, the basin size is reduced
from 0.33 to 0.04 as we move between the

(
N=2
X=$9

)
and

(
N=4
X=$9

)
treatment pair and the

(
N=4
X=$1

)
and

(
N=10
X=$1

)
pair.

The RPD prediction from the meta-study then is for an increase in the initial (ongoing) cooperation rate of
35 (50) percentage points (and again, a null effect within each pair).
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were held for each treatment, with the goal of recruiting at least 20 participants per ses-
sion, with one exception of the

(
N=10
X=$1

)
treatment for which we ran two sessions of 30.31

Sessions lasted between 55 and 90 minutes with participants receiving an average pay-
ment of approximately $19.

Each session comprised 20 supergames, with a common random termination chance of 1−
δ = 1/4 after each completed round.32 The participants were randomly and anonymously
matched in the 20 supergames in a stranger design.33 The 20 supergames were divided
into two parts of ten supergames.34 For final payment, one supergame from each part
was randomly selected, where only the actions/signals from the last round in the selected
supergame counted for payment.35

4. Results

We begin this section by describing the aggregate cooperation rates at the treatment level.
Then, we proceed to discussing inferential tests of our two basin-extension hypotheses.
Our main finding is that while neither extension contains all the relevant information for
predicting initial cooperation, the basin-size measure based on a standard independence
assumption delivers more definitive results for ongoing cooperation within the experi-
mental supergames.

4.1. Main Treatment Differences. Table 2 reports average cooperation rates broken out
by the four treatments, where we separately report initial (the first round) and ongo-
ing cooperation (all subsequent rounds). The averages are computed for the last five
supergames—which capture late-session behavior, after subjects have amassed experi-
ence in the environment—though including all rounds generates similar results (see Ta-
ble A.1 in the Online Appendix A). Overall, the results indicate large shifts in coopera-
tion as we vary the cost of cooperation X and/or the size of the group N .

The first row of Table 2 summarizes initial cooperation rates. The initial cooperation rate
in the

(
N=2
X=$9

)
treatment is 50.3 percent, essentially identical to the 50 percent cooperation

rate predicted by the RPD meta-study. However, holding constant the cooperation cost
at X = $9 and doubling the group size to four virtually eliminates cooperative behavior,

31In more detail, our design called for sessions to have at least 20 participants but allowed us to recruit
an additional group of size N depending on realized show ups. For

(
N=10
X=$1

)
we instead opted to recruit 30

participants for each session so that we had at least three groups in each supergame.
32However, we used common draws to keep supergame lengths matched at the session-level by treatment.
33All subjects received written and verbal instructions on the task and payoffs, where instructions are
provided for interested readers in the Online Appendix D.
34Subjects received full instructions for the first part and were told they would be given instructions for the
second part after completing supergame ten. For the four between-subject treatments outlined in Section
3, part two was then identical to part one. Later in the paper, we will outline a further set of treatments
with a within-subject change across the parts. The design choice for two identical parts here allows for
direct comparisons in first-half play.
35This method is developed in Sherstyuk, Tarui, and Saijo (2013) to induce risk neutrality over supergame
lengths. Another benefit from this design choice is that there are no wealth effects within a supergame;
moreover, history only matters as an instrument for the future play of others.
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Table 2. Cooperation rates and basin-effect decomposition

Action and
signal rates

X = $9 X = $1

N = 2 N = 4 N = 4 N = 10

Initial coop. 0.503
(0.058)

0.035
(0.017)

0.792
(0.042)

0.357
(0.055)

Ongoing coop. 0.450
(0.055)

0.006
(0.003)

0.409
(0.050)

0.184
(0.048)

Initial success 0.503 0.000 0.578 0.000
Ongoing success 0.450 0.000 0.293 0.000

Note: Results are calculated using data from the last-five supergames. Cooperation rates present raw pro-
portions (with subject-clustered standard errors).

with just 3.5 percent initial cooperation in
(
N=4
X=$9

)
. In low-temptation settings (X = $1),

groups of N = 4 show highly cooperative initial behavior (79.2 percent), while groups of
N = 10 generate moderate first-round cooperation rates (35.7 percent).

The second row of Table 2 indicates ongoing (t > 1) cooperation rates. Here, the data in-
dicate a decrease in cooperation when compared to the initial behavior in all treatments,
although the quantitative effects are largest in the $X = 1 treatments.36

The third and fourth rows of Table 2 present the fraction of rounds in which a success
signal was observed.37 Focusing on success signals, similar patters emerge to ongoing
cooperation, though with starker quantitative effects. Although a success is the modal
signal in the

(
N=2
X=$9

)
and

(
N=4
X=$1

)
treatments, in the

(
N=4
X=$9

)
and

(
N=10
X=$1

)
treatments we observe

no successes at all.38

Using only the raw averages, the evidence clearly falsifies the correlated basin/null hy-
pothesis on the effect of N , for both initial and ongoing cooperation. The experimental
results clearly indicate large changes in behavior as we move N as a comparative static,
fixing the value of X. For N = 4 we find the comparative-static effect predicted by the
correlated-basin measure as we move X, though this directional effect is also predicted
by the independent basin.

36In the Online Appendix A, Table A.2 further breaks out ongoing cooperation by the observed history in
the previous round. The results indicate that individual cooperation is highly conditional on successful
coordination. However, strategies are significantly more forgiving after failed cooperation at X = $1 than
X = $9.
37A success requires that the other N − 1 participants jointly cooperate. Success is a direct function of
group-level cooperation, where the expected success rate with an independent cooperation rate q is qN−1.
In two-player games, the success rate is identical to the cooperation rate. For the initial round the expected
success rates (in the Table 2 column order) are: 0.503, 4.2× 10−5, 0.497 and 9.5× 10−5.
38As success is a direct aggregate of individual-level cooperation we do not report standard errors (where
we also cannot calculate standard errors when there is no variation). However, the starkness of the effect
with no successes when the independent-basin size is high clearly illustrates the underlying economic ef-
fects.
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Table 3. Basin-effect decomposition

Cooperation
decomposition

p?0 Marginal effect from:

Ind. basin increase to Corr. basin decrease to
[0.33] p?0 +∆p?Ind. = [0.69] p?0 −∆p

?
Corr. = [0.04]

Initial coop. 0.464
(0.058)

−0.395
(0.048)

+0.357
(0.053)

Ongoing coop. 0.366
(0.051)

−0.293
(0.051)

+0.115
(0.061)

Note: Results are calculated using data from the last-five supergames. The cooperation decomposition runs
two subject-clustered probits, one for the initial, one for the ongoing cooperation. RHS variables are: a
constant and two dummies, one for a low-correlated–basin treatment (X = $1, both N values), one for a
high-independent–basin treatment (X = $9/N = 4 and X = $1/N = 10).

The evidence suggests that the independent-basin hypothesis is better at organizing the
data. Both initial and ongoing cooperation respond in the predicted direction as we shift
either X or N in isolation. However, for initial cooperation, we do not find perfect substi-
tution as we move both X and N . While the independent-basin hypothesis does not pre-
dict any change in cooperation rates between

(
N=2
X=$9

)
and

(
N=4
X=$1

)
or

(
N=4
X=$9

)
and

(
N=10
X=$1

)
, we

find substantive differences in the laboratory.39 Also, the average initial cooperation rate
when pooling

(
N=2
X=$9

)
and

(
N=4
X=$9

)
differ from the average initial cooperation when pooling(

N=4
X=$1

)
and

(
N=10
X=$1

)
. Initial cooperations in the pooled treatments for X = $9 and X = $1 are

28.6 and 59.4 percent, respectively, and the difference is more than 30 percentage points.

Whereas initial cooperation rates are inconsistent with the independent-basin hypothesis,
the results for ongoing cooperation under independence are considerably better, see treat-
ments

(
N=2
X=$9

)
and

(
N=4
X=$1

)
. Yet, we still note a difference between

(
N=4
X=$9

)
and

(
N=10
X=$1

)
, which

is primarily driven by a very stark finding of near-zero cooperation in
(
N=4
X=$9

)
. We explore

this further below. However, in the aggregate, when pooling the ongoing cooperation
rates acrossX, we find similar rates at 22.8 percent forX = $9 and 29.8 percent forX = $1.

4.2. Evaluation of Independent- and Correlated-Basin Hypotheses. Table 3 provides a
direct statistical evaluation of our two competing hypotheses. it reports results of probit
regressions that assess subjects’ cooperation decisions using dummy variables for the 2×2
design in Table 1 Panel (B). The dummy covariates are an indicator for the ∆p?Cor. decrease
in the correlated-basin size (as we decrease X), and an indicator for the ∆p?Ind. increase in
the independent-basin size (as we increase N within each X).

Each row of Table 3 provides the results of a separate estimation, one over initial coop-
eration and one over ongoing. The first column reports the estimated cooperation rate
when both dummy variables are zero: essentially the cooperation rate for a game with a
basin size of p?0 = 0.33. The other two columns report the estimated marginal effects on
the cooperation rate for each basin shock, holding the other constant. If either of the two

3929 percentage points in the first comparison and 35 percentage points in the second.
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Figure 2. Cooperation and the independent basin-size model
Note: Filled circles indicate separate treatments and filled diamonds treatments pooled over each value
of the independent-basin measure. Empty circles show the unilateral cooperation rates in the extension
treatment discussed in Section 5.

basin hypotheses fully explains behavior, we would expect a significant estimate for the
corresponding dummy and an insignificant effect on the other.

The estimation procedure is designed to directly parallel the probit model used to gen-
erate predictions from the meta-study. The estimated cooperation rates at p?0 = 0.33 are
in fact quantitatively very close to the meta-study prediction in Panel (C) of Table 1.
Whereas the meta-study predicts an initial (ongoing) cooperation of 49.5 (37.3) percent,
our data at p?0 = 0.33 indicate similar (and statistically inseparable) rates of 46.4 (36.6)
percent. To illustrate this, in Figure 2 we plot the fitted relationships from the meta-study
overlayed with our results from the four treatments using the independent-basin size on
the horizontal axis. Filled circles indicate separate treatments and filled diamonds treat-
ments pooled over each value for the independent-basin measure. While there is substan-
tial divergence for initial cooperation, Figure 2 indicates quantitatively similar results for
ongoing cooperation.40

Our tests of the two competing hypotheses focus on the second and third columns of Ta-
ble 3. If the independent-basin (correlated-basin) measure captures all relevant facets
of behavior, we would expect a significantly negative (insignificant) estimate for the
independent-basin increase (correlated-basin decrease) and an insignificant (significantly
negative) effect on the correlated-basin (independent-basin) increase.

40In the Online Appendix A, Figure A.3 presents analogous results organized under the correlated-basin
model. The figure illustrates much poorer organization of the data, both relatively across the treatment
comparisons, and quantitatively.
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For initial cooperation, we find that changes to both basin measures generate significant
effects (p < 0.001). The magnitudes of each estimated marginal effect are very similar, but
moving in opposite directions, as predicted. Since neither effect dominates, we conclude
both X and N contain information for predicting initial cooperation that is not fully ab-
sorbed by either basin measure.

However, consistent with our descriptive presentation of the raw treatment rates in Ta-
ble 2, the probit estimates for ongoing cooperation in Table 3 Panel (B) break toward
the independent-basin construction. The coefficient on the increase in the independent
basin is negative and significant (p < 0.001), while the estimate on the decrease for the
correlated basin is much smaller in magnitude and insignificant at the 5 percent level
(p = 0.061). Beyond qualitative directional effects, the quantitative change in ongoing co-
operation under the independent-basin measure is close to the predicted effects of the
standard basin shifts we would expect from the meta-study data.41 That is, the meta-
study predicts a drop of 21 percentage points (see Panel (C) of Table 1) in ongoing coop-
eration when the size of the basin increases from p?0 = 0.33 to 0.69, whereas our estimates
indicate a decrease by 29 percentage points.42

As mentioned above, the differences in the ongoing cooperation rates between our data
and the out-of-sample prediction from the meta-study are driven by the stark (essentially
boundary) behavior in the

(
N=4
X=$9

)
treatment. As illustrated in Figure 1(B) a two-player re-

peated game with a basin of size p? = 0.69 has a predicted ongoing cooperation rate of
16.3 percent, where we should be able to reject 11 percent cooperation at 95 percent con-
fidence. While the

(
N=10
X=$1

)
treatment is close to the predicted rate (as are the two other

treatments at p? = 0.33), Figure 1(B) clearly indicates that the
(
N=4
X=$9

)
treatment is signif-

icantly below the predicted level. However, when the noncollusive strategy is risk dom-
inant (the independent-basin size is greater than 1/2), the related literature suggests that
we should not expect substantial cooperation. While the model predicts low cooperation
at this basin size (∼20 percent), the evidence from the

(
N=4
X=$9

)
treatment pushes towards

the same conclusion, just in a starker way. Aside from the more-extreme coordination
effects at

(
N=4
X=$9

)
, for the other three treatments the theoretically standard extension of

41Our measures of equilibrium selection aim to capture strategic uncertainty in a setting that differs from
the two-player RPD. Ideally, a theoretical measure would incorporate all relevant features of the environ-
ment and provide guidance on equilibrium selection for any setting. The proposed measures (independent
and correlated) aim to capture aspects of strategic uncertainty. Finding that results in our setting are com-
parable to those in the two-player RPD is useful because it suggests that a measure of strategic uncertainty
may be a good predictor of collusion regardless of the specific details of the environment.
42In contrast, for a decrease to 0.04 we should expect an increase in ongoing cooperation of 50 percentage
points; instead, we observe an increase of 11.5 percentage points.
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the strategic-uncertainty measure comes very close to quantitatively predicting the ongo-
ing cooperation level using the out-of-sample relationship estimated from the two-player
RPD meta-data.43

Finally, we attempt to measure how much correlation is necessary to rationalize the data.
To do this, we allow for the beliefs to be a convex combination of the two belief models,
all N − 1 agents choosing grim with probability p with perfect correlation σ of the time,
and each choosing grim independently with probability p the remaining (1 − σ ) of the
time. As such, for an N -player game in which a player considers conditional cooperation,
the probability of a coordination is given by

σ · p+ (1− σ ) · pN−1.

This generalized basin of attraction solves for the indifferent belief p?(σ,x,N ) for which
the agent is indifferent between choosing a grim or always-defect strategy, here with the
additional parameter σ that nests the models at the two extremes: σ = 0 for full indepen-
dence, σ = 1 for perfect correlation.44 Looking at the best fitting parameter, for initial
cooperation, we estimate σ̂I = 0.091, while the comparable estimate for ongoing cooper-
ation is σ̂O = 0.031. As such, the estimated degree of correlation in the relaxed model is
quantitatively small.

We summarize our main findings as:

Result 1 (Independent-Basin Measure). The independent-basin measure qualitatively orga-
nizes the results for ongoing cooperation, and in all but one treatment matches the quantitative
level predictions. However, it does not contain all relevant information for predicting initial
intentions to cooperate.

Result 2 (Correlated-Basin Measure). Our data are inconsistent with the predictions from
the correlated-basin hypothesis, both for initial and ongoing cooperation. In particular, whereas
the correlated basin predicts that behavior should ceteris paribus be unaffected byN we find de-
creases in cooperation as N increases. Quantitatively, the estimated degree of belief correlation
is small.

43 Some of the differences in cooperation rates at fixed values of the basin are driven by differences in the
number of unconditional cooperators at X = $9 in comparison to X = $1. In Tables E.1 and E.2 in the Online
Appendix E we present strategy frequency estimates from the first and last seven supergames. Our results
here suggest much greater rates of unconditional cooperation in the X = $1 treatments than X = $9, though
this falls across the session. Because variation in X is associated with shifts in the correlated-basin value
(invariant to N ), this presents a confound in interpretations for the small positive effect for the correlated
basin. While it could represent belief correlation, it could also be driven by other-regarding preferences.
44Because the model now needs to make a quantitative prediction on the effect at different basin values—
where the extreme models are designed for perfect nulls effects—we use the estimated meta-study coopera-
tion model Q(p), illustrated in Figure 1(A) and (B) for initial and ongoing rates. As such, the log-likelihood
equation across our four treatments is given by:

l(σ ;Q) = l
(
Q

(
p? (σ,$9,2)

))
+ l

(
Q

(
p? (σ,$9,4)

))
+ l

(
Q

(
p? (σ,$1,4)

))
+ l

(
Q

(
p? (σ,$1,10)

))
.

This is a single equation in σ , which can be estimated via maximum likelihood, see Figure A.2 in the Online
Appendix A for illustration.
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5. Extensions

Our analysis so far has abstracted away other features of the coordination problem to fo-
cus on the pure effects of the primitives of the strategic game. In this section, we consider
four extensions—with relevance both inside and outside the laboratory—that allow us to
study possible limitations of the strategic-uncertainty model to predict changes in equi-
librium selection.

First, we consider the extent to which beliefs about collusive behavior of others may be
distorted by prior experience. While a policy change can alter market primitives and the
strategic-uncertainty measure, the underlying variable in this model is belief in others’
cooperating. It seems plausible that beliefs may be driven by prior experience before any
change in the primitives takes place, and so the model may perform poorly at predicting
changes within a population. For example, if a player has engaged extensively with the
same population of market participants under a status quo and adapted noncollusive be-
havior, this behavior may be sticky, and therefore unresponsive to shifts in the primitives.
Our treatments in the previous section used a between-subjects design: identification was
based on comparisons of late-session behavior between different populations, each with
experience in a fixed environment. Here, in a modified treatment, we examine the effects
of varying the number of players N within the same population. In this extension, we
show that outcomes do not exhibit long-run stickiness, where the between- and within-
subject results are largely in line.

In a second set of extensions, we examine the strategic-uncertainty mechanism underly-
ing the basin-size selection device.45 In particular, we examine the extent to which our
results are affected by the possibility of explicit coordination, holding constant X and N .
Here, we seek to mirror an empirical finding that when collusion in industries is detected,
it is often accompanied by evidence of explicit collusion—despite the illegality of such
meetings.46 We show that once explicit collusion is allowed, neither the independent-
nor the correlated-basin measures are good at predicting collusive behavior. Once parties
can explicitly collude, we find very high levels of sustained cooperation. This suggests
that, indeed, uncertainty over the other strategic choices is a main driver of behavior in
our treatments. However, the extremeness of the effect once communication is allowed
for raises a question over the extent to which explicit collusion might lead to high coop-
eration rates even when collusive outcomes are not an equilibrium. To examine this, we
show that there are clear limits to what explicit collusion can achieve. In fact, our findings
suggest pre-play communication no longer helps at sustaining collusive behavior once it
can no longer be theoretically supported in equilibrium.

45Strategic uncertainty is a term that captures challenges when a player has to think about the behavior of
a human opponent. Free-form communication treatments can reduce strategic uncertainty because play-
ers can share information that reveals their strategic intentions. However, our design is not equipped to
identify the mechanism through which strategic uncertainty is reduced. It could be that messages convey
the opponent is reasonable and understands the tensions of the game. It could be that messages do not di-
rectly convey information on rationality but simply reduce social distance. Perhaps, once social distance is
reduced, it is easier to trust the other player and, as a result, strategic uncertainty is reduced.
46See Marshall and Marx (2012) for a more comprehensive treatment.
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Our third extension tests a possible limitation of the basin-of-attraction measure along a
different dimension. In our previous treatments we required allN players to cooperate to
achieve the efficient outcome. Here, we soften that requirement by allowing for the num-
ber of cooperating players to be less than N . At first sight, this less demanding require-
ment for a cooperative outcome suggests that more cooperation would emerge. However,
the basin of attraction makes a prediction in the opposite direction. The reason is that
reducing the number of players needed for a first-best outcome introduces a new coordi-
nation problem: which two players will be the ones who cooperate. In fact, the new co-
ordination problem introduces so much strategic uncertainty that both measures predict
no cooperation. As such, the treatment provides a stark test of the basin-of-attraction no-
tions. Although the cooperation rates we document are not zero, they are significantly
lower than in the comparison treatment where N = 2 and both players have to cooperate.

The final extension we discuss proposes a procedure to study the validity of the basin-of-
attraction measure beyond the laboratory. The section introduces AIAs that are currently
used for pricing in several markets. While there are multiple AIAs currently studied in
the literature for their potential capacity to collude, we show that a specific AIA algorithm
that uses only past experience to learn matches quite well the collusion predictions under
the basin-of-attraction measure. In other words, in this extension we show that expected
collusion for a given measure of the basin of attraction is comparable between a specific
AIA algorithm and what has been documented for humans in the laboratory. We leverage
this finding to propose several alternatives to test the equilibrium selection theory beyond
our setting and parameterizations.

5.1. Between vs. Within Identification. The motivating idea for our first extension is
that in many settings of interest the policy-relevant comparative static varies within a
population. However, if agents have strong beliefs about others due to previous experi-
ences, it may be that our theoretical construction lacks the ability to predict outcomes
as policy changes. If selected equilibria are very sticky within a population, then more-
standard assumptions maintaining the equilibria across the counterfactual may have
greater validity. For example, if a participant’s experience with others is that they play
the stage-game defection every period, this belief can persist despite a policy shift that
makes collusion easier.

Ideally, we would introduce a primitive change within a supergame; for example, a move
from N = 4 to N = 2, where the matched player after the modification is one of the three
matched participants from before. However, in exploring potential designs, we were not
satisfied that they would produce clear results. First, it is well documented that repeated-
game environments require several supergames of experience for participants to inter-
nalize the environment (Dal Bó, 2005). While implementing a surprise change in N—as
a mid-supergame manipulation—would mirror an outside-the-laboratory consolidation,
it would provide a single supergame observation. An alternative design choice could im-
plement a change in N with some probability within each supergame. However, any ob-
served effects would then be confounded with the expectations over the primitive change
(and greater complication in the instructions) and would no longer be comparable to our
between-subject treatments.
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Given these potential confounds, we instead opted for a design with a surprise one-time
change in the number of players occurring in a fixed session-level population. Holding
constant the cooperation cost at X = $9, we initially set a value of N (either two or four)
for the first ten supergames. Then, we changed the value ofN for the last ten supergames
(to four or two, respectively).

This led to two additional experimental treatments, one with
(
N=2
X=$9

)
in the first half, and(

N=4
X=$9

)
in the second; and the converse treatment from

(
N=4
X=$9

)
in the first half, to

(
N=2
X=$9

)
in

the second. Given that we hold constant X = $9, for simplicity we label the treatments as
2→ 4 and 4→ 2, for the changes from the first half to the second half. In both treatments,
the change in N comes as a surprise: subjects know that there is a second part, but do
not receive instructions until supergame ten ends.47 In terms of the standard strategic-
uncertainty model this creates a shift across the session from a low basin size of 0.33
when N = 2, and a high basin size of 0.69 when N = 4. In particular, this is a change in N
that for our between-subject design generated a substantial treatment effect.

In Figure 3(A) we present the initial cooperation rates in each supergame from 1 to 20
averaged across all sessions. The cooperation rates refer to between- and within-subject
treatments with X = $9. The between-subject treatments with N = 2 and N = 4 are indi-
cated by two gray dashed lines (separately labeled), while the within-subject treatments
are represented by two colored lines: a solid red line for the 2→ 4 treatment and a dash-
dotted blue line for the 4 → 2 treatment. The figure illustrates a substantial between-
subject effect, with more cooperation in N = 2 over N = 4 for the twenty supergames.
Further, the figure indicates that our within- and between-session results are identical for
the first ten supergames. Pooling the between and within treatments with N = 2 in su-
pergames 6–10 the initial cooperation rate is 47.4 percent. In contrast, the pooled cooper-
ation rate for N = 4 is just 13.9 percent.48 As we move into supergames 11–20, the num-
ber of players matched in each supergame changes for our within treatments. The verti-
cal lines in Figure 3(A) indicate the immediate shift in behavior as the primitive changes.
For the 2→ 4 treatment (the solid red line), initial cooperation levels remain fairly high
after changing from N = 2 to N = 4. In fact, cooperation in the first four-player interac-
tion (supergame 11) actually exhibits an increase to 59.7 percent from the 53.0 percent
from the last two-player interaction (supergame 10). However, while there is no imme-
diate drop in cooperation, and thus stickiness, as subjects gain experience the coopera-
tion rate falls rapidly, reaching 16.7 percent by supergame 20. In contrast, moving in the
other direction from N = 4 to N = 2 (the blue dash-dotted line), we find an immediate
jump as the primitive shifts. While the initial-round cooperation in supergame 10 with
four-players is 18.3 percent, the reduction toN = 2 pushes the cooperation rate up to 60.0
percent in supergame 11. The immediate jump in behavior is then sustained across the
remaining supergames, with 58.3 percent cooperation in supergame 20.

47For our between-subject treatments sessions were also divided into two parts, except that once the sub-
jects reached the second half of the session, they were told that part two is identical to part one.
48Testing the initial cooperation rate differences in supergames 6–10 over N (so across the between and
within sessions with identical treatment at this point) we find p = 0.150 for N = 2 and p = 0.981 for N = 4
from t-tests for a level difference, and p = 0.353 for a joint test.

25



1 5 10 15 20
0

25%

50%

75%

N = 4

N = 2

2→ 4

4→ 2

Supergame

In
it

ia
lc

oo
p

er
at

io
n

(a) Between vs. within (X = $9)

1 5 10 15 20
0

25%

50%

75%

100%

NoChat(3/4)

Chat(3/4)

Chat(1/2)

Supergame

In
it

ia
lc

oo
p

er
at

io
n

(b) Explicit vs. implicit
(
N=4
X=$9

)
Figure 3. Initial cooperation rates in extensions (by supergame)

Inspecting the results illustrated in Figure 3(A) it is clear that there is little evidence
for the hypothesis that equilibrium selection is sticky in the long run under a within-
population shift in N . Despite exposure to the alternative environment in the first half,
longer-run behavior in the second half is not dissimilar from that observed in the between-
subject design. This is indicated by the close proximity of the two colored/gray line pairs
in supergame 20, and the relative distance from the other pair.

In the Online Appendix B, we provide a more detailed like-with-like comparison of the
between-subject and within-subject results. These more detailed findings do not indicate
differences with the between-subject results as we move from 2→ 4. However, in opposi-
tion to the hypothesis that the selected equilibrium is sticky, we find a significant increase
in the response to N over the between analysis as we move from 4→ 2.

Overall, we find that:

Result 3 (Between vs. Within). Switching the identification to within does not substantially
change our qualitative results. We find no evidence that the selected equilibrium is sticky in
the long run as we shift a primitive within the population. If anything, our within-subject
identification shows a larger shift than in the between-subject design as we decrease N .

5.2. Explicit Correlation. The focus so far and for the RPD literature in general has been
on an examination of implicit coordination. Specifically, our results suggest that a model
of strategic uncertainty extended through independence is relatively successful in orga-
nizing the data. This is particularly so for ongoing cooperation. On the contrary, a mea-
sure based on perfectly correlated play fails to predict the substantial effect of N for both
initial and ongoing behavior.
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Table 4. Cooperation: implicit vs. explicit

Implicit Explicit

NoChat(3/4) Chat(3/4) Chat(1/2)

Initial coop. 0.035
(0.017)

0.988
(0.007)

0.300
(0.037)

Ongoing coop. 0.006
(0.003)

0.806
(0.030)

0.044
(0.018)

Initial success 0.000 0.971 0.094
Ongoing success 0.000 0.756 0.002

Note: All treatments have X = $9,N = 4, where NoChat(3/4) refers to the core 2× 2 between-subject design
discussed in Section 4. Results are calculated using data from the last-five supergames. Cooperation rates
present raw proportions (with subject-clustered standard errors).

These results validate a standard extension of the basin-of-attraction notion. However,
correlation across participants’ beliefs becomes much more plausible when agents have
access to a channel that enables explicit coordination. In an extension to our previous
experiments, we now examine the extent to which multiple parties successfully collude
when given a coordination device. To this end, we designed two additional ‘chat‘ treat-
ments by modifying an already-studied environment with the greatest coordination on
the noncollusive outcome, the

(
N=4
X=$9

)
treatment.

In our first chat treatment, the first 10 supergames are identical to the
(
N=4
X=$9

)
treatment,

but in supergames 11–20 we introduce pre-supergame chat between the four matched
players. The second chat treatment is identical to the first in terms of timing for when
the chat coordination device is introduced; the difference between the two treatments is
that in the latter we reduce the continuation probability to δ′ = 1/2 for the entire session.
The designed effect of this change is that while the stage-game payoffs and the number of
players remain constant, lowering the value of δ makes the grim-trigger strategy a knife-
edge-only SPE, with the critical belief p?(δ′) = 1 required on the other cooperating under
both Equations (2) and (3). The δ′ treatment therefore serves as a test for whether explicit
coordination can implement outcomes that are not supportable as a robust equilibrium
(that is, with arbitrarily small trembles in behavior).

In Figure 3(B) we plot the initial cooperation rates in each supergame averaged across ses-
sions

(
with the

(
N=4
X=$9

)
treatment provided as a baseline, labeled here as NoChat(3/4)

)
. Late-

session cooperation and success rates (in supergames 16–20 with subject-clustered stan-
dard errors) are provided in Table 4.

Our first chat treatment delivers unequivocal results: providing pre-play communica-
tion at δ = 3/4 takes the near-zero cooperation rate in the absence of chat to almost com-
plete cooperation. While ongoing cooperation drops slightly from the very high initial-
cooperation levels, the large majority of supergames exhibit coordination by all four par-
ticipants on the efficient/collusive outcome. Such high levels of cooperation with com-
munication are inconsistent with the predictions of either model of equilibrium selection
for these primitives. This suggests that once explicit coordination devices are allowed
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for and strategic uncertainty is reduced, the independent model—that captures behavior
when collusion is tacit—becomes redundant.

However, at the δ′ boundary, even with pre-play communication, participants find it hard
to coordinate. While initial cooperation continues to be substantially higher than in the
treatment without chat (30.0 percent), ongoing cooperation falls to just 4.4 percent (with
an ongoing success rate of only 0.2 percent). The findings indicate that for explicit com-
munication to play a role, there need to be clear incentives for collusion.

Overall, the results of this extension can be summarized as follows:

Result 4 (Implicit vs. Explicit). Explicit coordination leads to very high cooperation levels
with multiple players, in a setting where implicit cooperation achieves near-zero cooperation.
However, in the limiting case, where cooperation is a knife-edge SPE outcome, even pre-play
chat fails to support cooperation.

5.3. Easing Requirements for a Success . Our previous result illustrates a limitation of
both basin measures: if communication is allowed, neither extension predicts behavior
well. Here, we explore another extension that, similarly to the one detailed above, may
presumably show limitations of either of the two measures in predicting behavior. In our
prior games, we generalized the two-player RPD to theN -player setting by requiring that
all N players jointly coordinate to obtain the first-best outcome. In this way, we main-
tained the stark coordination problem in the two-player RPD over two Pareto-ranked out-
comes: efficiency with joint-cooperation, and the stage-game Nash outcome. However,
once we allow forN players—even holding constant our 2×2 stage-game representation—
it is possible to allow for weaker coordination requirements. In this extension, we weaken
this requirement by studying an environment with N = 4 players and X = $9, but where
only two cooperative players are required for everyone to receive a success signal. A sin-
gle cooperator is enough to provide a success for the other three, but with two cooper-
ators all four participants will get a success. In this way, the cooperative requirements
are identical to the standard two-player RPD (two cooperators yield a stable efficient out-
come) but the number of participants is larger, N > 2.

In this new treatment, we can again follow the same logic for both extensions of the basin-
of-attraction measure. While in this new environment efficient cooperation seems easier
to sustain than in the two-player RPD—requiring just two of four to cooperate, rather
than two of two—both extensions indicate that this environment is strictly harder. Both
the independent and correlated basin extensions suggest that not only will the rate of
cooperation be lower here, but so too will the rate of successful cooperation.

Fixing the same grim-trigger versus always-defect thought experiment, we can focus on
the event that exactly one other player is a conditional cooperator: with more than one,
the best-response is always defect (cooperation is costly, and defection does not affect the
outcome); with less than one, the best response is again always defect (as any cooperation
attempt will fail). An automatic inference then is that if others are perfectly correlated
in their strategy choice, choosing grim can never be a best-response, as the number of
cooperators will be equal to either zero or three. Consequently, the correlated extension
predicts very low cooperation (with p? = 1). However, even when other participants
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choose grim independently with probability p, it is easy to show that there is no p ∈ [0,1]
for which grim is a best response.49 As such, despite weakening the requirement for
cooperation relative to the standard two-player RPD, the prediction of the basin-based
extensions is that cooperation attempts will fail.

The reason for this non-intuitive prediction is that in this alternative setting, strategic
uncertainty is substantially increased. Not only is there the same uncertainty from be-
fore over whether the group will succeed, there is also uncertainty over which group-
members, if any, will free-ride on the cooperation of others. The basin calculations indi-
cate that the effect of increased strategic uncertainty dominates the weaker requirement
for success. To examine this prediction, we conducted three sessions of this treatment
(with 64 unique participants recruited), using X = $9 but where only two of the N = 4
group members needed to cooperate for every player in the group to receive a success
signal.

Before describing the results of the new treatment, we review the comparable behaviors
for the baseline two-player RPD. Taking averages at the partnership level, across 480
late-session rounds in

(
N=2
X=$9

)
, we find an overall cooperation rate of 44.6 percent, with

a 36.0 percent rate of group-wide success (here both players cooperating in the round).
Having fixed the temptation parameter at X = $9, our new treatment has the weakened
requirement of two or more cooperators from the four matched players for a group-wide
success. In the data from the new treatment, we find a cooperation rate of 22.7 percent
(192 rounds) with a group-wide success rate of 25.5 percent.50,51 Per the prediction from
the basin, the results indicate significantly reduced levels of coordination in the game
(p = 0.006).

Despite making it mechanically easier to generate a success than in the two-player RPD,
the results mirror the directional prediction from the basin calculation. Furthermore, at
the full basin size of one, the unilateral cooperation rates in the treatment are in line
with the quantitative predictions of the basin. To see this, in Figure 2 we illustrate the
treatment’s initial and ongoing cooperation rates as empty circles.

In summary, we find that:

Result 5 (Easing Requirements for a Success). In a treatment where the set of players needed
for a successful outcome is lower than the group size, the basin-of-attraction extension predicts
a reduction in coordination due to an increase in strategic uncertainty (here distributive). The

49It is sufficient to show that the difference in payoff between grim and always defect is negative at p =
1

(N−2)(1+x/9)+1 , which is the best-case for grim (the strategy payoff difference is single peaked and uniquely
maximized here).
50To make fair comparisons, our analysis here focuses on the group-level analysis, in particular the group-
wide success outcome. However, we note that cooperation at the individual level is significantly lower in
the new treatment (p<0.001 all comparisons).
51An alternative comparison here is to the

(
N=4
X=$9

)
treatment. However, the treatment results are already

at a hard boundary (a late-session cooperation rate of 1.4 percent, with a zero percent rate of group-wide
success). Given this, the fact that we find greater success with the weakened threshold is not surprising.
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treatment results indicate low cooperation rates in line with empirical rates observed for ex-
treme basin-value in other RPD experiments. In terms of successful coordination, the effect
from weakening the coordination requirements matches the basin prediction, with a significant
decrease in successful coordination.

5.4. Moving Beyond the Laboratory . Data to evaluate selection criteria such as the
basin-of-attraction have thus far come from the behavior of human subjects in the labo-
ratory, with treatment parameters often selected to study other hypotheses. While meta-
studies have brought some of this together, the ability to study a wider set of parame-
ters across many other environments is necessary to pin down which measures are most
predictive and the domains they can cover. However, experimental methods are often
best-placed to examine relatively coarse hypotheses, across a sparse set of parameters. As
such, it is particularly useful to find empirically driven methods that might supplement
and target experiments for maximum inference.

To that end, in this last extension we propose one option as a potential guide for future
exploration. Our approach here is based on an emerging literature in industrial organiza-
tions that examines the pricing behavior of AIAs. Calvano, Calzolari, Denicolo, and Pas-
torello (2020) outline how a commonly used AI-learning algorithm (Q-learning, Watkins,
1989) is capable of maintaining supracompetitive prices in a standard dynamic Bertrand
environment with implicit coordination, via standard dynamic strategies. In a response
to this, Asker, Fershtman and Pakes (2021, 2022) outline how this result is sensitive to the
form of the algorithm, showing that supracompetitive prices rely on the extent to which
AIAs can learn counterfactually from what would have happend with alternative choices
(termed synchronous learning), as opposed to learning solely from the on-the-path expe-
riences (termed asynchronous learning).

Given the growing interest in AIAs as pricing agents, and the potential for collusion to
emerge, there is a natural connection to the question we are asking in this paper. Specifi-
cally, in this section we examine how the steady-state behavior of the Q-learning AIAs is
related to the behavior of lab subjects in our in our repeated N -player dilemma, and how
both are predicted by the basin of attraction. In particular, we will demonstrate a strong
parallelism between our laboratory results and the results from experimental simulations
using AIAs, with extensive variation across x, N , and δ.

In total we simulate over 1.8 million games with an identical structure to our experimen-
tal N -player RPD environment, but here using two-state AIAs as the decision makers.52

In our simulations we vary: (i) the number of players, N = {2,3, . . . ,10}; (ii) the discount
factor, δ = {0.75,0.90, 0.95, 0.99}; the always-defect basin size (p?(x,N ,δ) = {0,0.01,0.03,
0.05, . . . ,0.99}, chosen by varying x; and (iv) the algorithm learning mode. In the asyn-
chronous learning mode the AIAs learn solely from the payoffs observed from their cho-
sen decisions, whereas in the synchronous mode we allow the AIA to learn both from

52With two internal states the AIA decision makers have access to a conditioning variable that could be
used to construct a history-dependent strategy such as the grim trigger. However, the way the algorithm
makes use of this state variable is entirely endogenous, determined by the particular learning path.
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the path and the counterfactual.53 For each treatment environment/algorithm we simu-
late 1,000 distinct repeated games, where each simulated game runs for 10,000 rounds
(this was a sufficient length to obtain convergent behavior for all treatments/algorithm
modes). Our final measures from each simulation are the ongoing cooperation rate among
the AIAs, where initial behavior is entirely random, driven by an initially diffuse uniform
distribution over the action choice weights for each state.54

We present the results of our AIA simulations in Figure 4 as the triangular points, with
the asynchronous results in panel (A) and the synchronous results in panel (B). Each tri-
angle represents the average long-run cooperation rate across our AIAs at that value of
p? , pooling our treatments across N and δ.55 As such, each point represents an average
across 18,000 AIA supergames. Behind each set of results for the algorithms we illustrate
the fitted relationship between the basin and ongoing cooperation from the RPD meta-
study using human subjects, cf. Figure 1(B). Figure 4(A) makes clear a top-level obser-
vation that the results from the asynchronous algorithm display behavior that is highly
consistent with the predictions of the independent extension: collusion decreases as p?

increases and essentially disappears once p? > 0.5. In the region with p? < 0.5, asyn-
chronous AIAs broadly mirror the behavior of subjects in the laboratory.56 For values of
p?>0.5, the asynchronous AIAs cooperate less than humans, although the difference is
not large. In contrast, for the more sophisticated synchronous algorithm shown in Panel
(B), we observe much larger differences in behavior between the AIAs and humans. Mir-
roring the results from Asker, Fershtman, and Pakes (2022), the synchronous algorithm
is much less successful at colluding, only doing so at very low values of the basin.

We conclude that:

Result 6 (Exploration of AIAs Behavior Relative to Humans). Asynchronous AIAs that
learn only from past experiences on the path display collusion behavior that is consistent with
the prediction of the independent extension of the size of always-defect basin and track the
behavior of human subjects quite closely. On the contrary, there are large differences between
the behavior generated by sophisticated synchronous algorithm that also learns counterfactually
and the behavior of humans.

Our results here suggest that Q-learning algorithms can be predictive of human behavior
in these repeated settings. Future research can explore and leverage this link, where

53We thank John Asker for sharing MATLAB code, which we re-implemented in Python.
54In general, we follow Asker, Fershtman, and Pakes (2021) in this setup, with the only substantial change
being the switch from a dynamic Bertrand environment they study with many price actions, to the two-
action environment studied in our laboratory treatments.
55The AIAs we study require a substantial degree of training to converge. For this reason, we examine
the long-run, convergent behavior of Q-learning AIAs within our simple N -player social dilemma envi-
ronment. The ongoing cooperation rates that we report correspond to the convergent behavior that AIAs
achieve for a given parameterization.
56For higher N , and lower p? the data does exhibit a non-monotonicity for δ = 0.75. which appears in the
graph as the flat region close to a zero basin. The reason for this is that at very low values of x (<< 10−5), the
asynchronous AIAs have a hard time learning the relevant punishment strategies to support cooperation,
where the state is used instead for serial alternation between cooperation and non-cooperation.
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we now outline some of the possible ways this can be accomplished. First, the exercise
suggests ways in which AIAs can complement the laboratory. For example, in a standard
RPD environment, the asynchronous algorithm can be used to predict behavior for sets
of parameters for which there is no/very little experimental data. So long as one can
show some parallels between AIAs and human-subject behavior, testing the connections
between behavior of AIAs and humans, then AIAs might be used for thought experiments
or exploring the extremes of the parameter space.

Greater exploration of the parameter space may then help fine-tune empirical selection
criteria, even in settings for which there exists substantial data. For example, some facets
of the AIAs behavior may not be not fully captured by the summary basin p? . As an ex-
ample, in two-player PD games with high temptations and low sucker payoffs, AIAs be-
gin to exhibit serial alternation across the (C,D) and (D,C) actions well before this behav-
ior becomes efficient (1+g − s >= 2). This prediction from the AIAs can then be examined
in the laboratory. The data from such experiments could clear up whether the predicted
discrepancies were exclusive to AIAs, or whether they are shared by humans, suggesting
a need for a correction to the selection criterion at these regions of the parameter space.

Finally, AIAs can be used to explore behavior and shape selection theory in extension en-
vironments that differ from the standard RPD or our N -player extension. For example,
with AIAs it is relatively simple: (i) to expand the action set (as in the Bertrand/Cournot
setting); (ii) to allow for state variables that evolve with the game (stochastic/dynamic
games); (iii) to allow for imperfect monitoring (á la Green and Porter, 1984); or (iv) to
study features that reduce strategic uncertainty such as sequential moves or explicit com-
munication between the AIAs. Naturally, studying whether empirical selection criteria
such as the basin of attraction for always defect work in these other settings are outside
of the scope of this single paper. However, we suspect that AIAs will be a key aide for fu-
ture explorations of these selections questions within experimental contexts. Moreover,
the increasing interest in AIAs will mean that studying their behavior will have increas-
ing external validity.

6. Conclusion

Our paper examines equilibrium selection in repeated games and the extent to which it
can be predicted with a model of strategic uncertainty. We leverage a model of equilib-
rium selection that rationalizes behavior in the two-player RPD and design an experi-
ment to stress test this specific theoretical model. The predictive model works by mediat-
ing the effects from multiple primitives into a single dimension, strategic uncertainty. As
such, even for rich counterfactual policies with many changes to the setting, the model
can still generate a directional prediction. We introduce a novel source of strategic un-
certainty that has not yet been studied in the RPD setting (the number of players), while
also manipulating a payoff parameter. Therefore, we can change both sources of strate-
gic uncertainty simultaneously and study the extent to which the evidence is consistent
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Figure 4. Cooperation behavior of two different AIAs

with the predictions of the selection model. Our main finding is that the model of equi-
librium selection can indeed be used as a device to understand successful ongoing coor-
dination on the collusive outcome.57 In particular, the model performs well in trading off
the competing effects from the two distinct sources of strategic uncertainty.

After illustrating the theoretical power of the model for implicit coordination, we turn
to several application-motivated extensions that probe the model’s limitations. Our first
extension is motivated by the extent to which prior history and experience could make
the equilibria “sticky,” even when the model suggests a change. To do this, we study the
extent to which our findings still hold when treatment-variable manipulations take place
within the same population, as opposed to between populations in our main study. The
results indicate that even when participants experience a treatment-variable shift, the
model continues to predict the longer-run outcomes. While we find some hysteresis in the
short-run responses to a within-population policy change—initial stickiness in behavior
in one direction and a large immediate response to the change in the other—behavior af-
ter accumulating experience under the new parameters is not distinct from that observed
in the between-population treatments. As such, these results suggest that the model pre-
diction fares better than the more-standard assumption of maintaining a selected equi-
librium across a policy change.

In a second extension, we examine the potential effects from explicit collusion. Our main
finding here is that once we allow for explicit coordination, by providing an explicit coor-
dination device (pre-play chat), the selection-model prediction differs considerably from

57In applications outside of the laboratory that may want to leverage this finding (that theoretical predic-
tion measures fare better when checked against ongoing measures of collusion), it would be useful to es-
tablish that the behavior in the game is either converging or at least not displaying large changes.
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observed behavior. In fact, where the model suggests very low levels of cooperation, the
observed behavior is highly cooperative, once coordination devices are present. The evi-
dence from this extension indicates both that strategic uncertainty plays a clear role, but
also that the selection model based upon it is entirely inappropriate for predicting behav-
ior when explicit collusion is suspected.

Thus far, in our main treatments (and the previous extensions) we required all N players
to cooperate to reach a cooperative outcome. Our third extension eases this requirement
so that only a subset of players needs to cooperate. One may think that this relaxation
would increase cooperation rates as reaching a first-best outcome is now less restrictive.
However, the measures based on strategic uncertainty make a prediction in the oppo-
site direction. The reason is that the softer requirements add strategic uncertainty with
respect to which players will cooperate and which will free-ride on others cooperating.
Our results are consistent with the strategic-uncertainty predictions and suggest lower
rates of cooperation. This implies that in settings in which free-riding is possible (for ex-
ample, an indefinitely repeated voluntary contribution game), strategic uncertainty in-
creases and other things constant it is more difficult to cooperate. Our extension does not
directly test such an environment but can be taken up in subsequent work.

Our final extension highlights a limitation of the experimental approach and lays out a
possible path for future research. We show that some AIAs can be used to predict behav-
ior in experimental settings beyond the standard RPD. We document that the collusive
behavior of some AIAs is consistent with the strategic-uncertainty measure and that it
closely tracks the behavior of humans. While these exercises are preliminary, we outline
how future research can leverage AIAs to design better tests in commonly-used labora-
tory settings, and how to evaluate the adequacy of empirical selection indices beyond the
simplest environments.
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Appendix A. Additional Tables and Figures

Table A.1. Cooperation rates across all supergames

Cooperation
rates

X = $9 X = $1

N = 2 N = 4 N = 4 N = 10

Initial coop. 0.466
(0.046)

0.100
(0.021)

0.719
(0.039)

0.457
(0.044)

Ongoing coop. 0.296
(0.029)

0.044
(0.012)

0.433
(0.034)

0.243
(0.039)

Initial success 0.466 0.003 0.408 0.010
Ongoing success 0.296 0.002 0.275 0.009

Note: Results are calculated using data from all supergames. Cooperation rates present raw proportions
(with subject-clustered standard errors).

Table A.2. Cooperation in reaction to previous round’s history

X = $9 X = $1 Chat (X = $9,N = 4)

History N = 2 N = 4 N = 4 N = 10 δ = 3/4 δ = 1/2

(C,S) 0.977
(0.011)

– 0.988
(0.013)

– 0.980
(0.006)

0.750
(0.217)

(C,F) 0.317
(0.063)

0.000 0.521
(0.085)

0.739
(0.077)

0.342
(0.0073)

0.255
(0.104)

(D,S) 0.150
(0.060)

– 0.263
(0.110)

– 0.143
(0.136)

0.750
(0.217)

(D,F) 0.033
(0.006)

0.006
(0.004)

0.023
(0.009)

0.025
(0.009)

0.019
(0.019)

0.006
(0.004)

Note: Data are taken from the last five supergames in each treatment (with subject-clustered standard
errors). Cells marked “–” have no observations at the relevant history. History shows the own-action-signal
pair from the previous round, (at−1,σt−1).
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Figure A.2. Belief correlation
Note: Data are taken from the last five supergames (16–20) in our four main between-subject treatments.
Log-likelihoods are calculated using the imputed cooperation rate from the Dal Bó and Fréchette (2018)
meta-study with belief correlation σ calculated as a σ proportion of independent beliefs and a (1 − σ )
proportion of perfectly correlated beliefs.
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Figure A.3. Cooperation and the correlated basin-size model
Note: Circles indicate separate treatments and diamonds treatments pooled over each value of the
correlated-basin measure. See Figure 2 in the main paper for the analogous figure under the independent
basin.
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Figure A.4. Cooperation behavior of asynchronous AIAs
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Appendix B. Further Analysis of the Within-Subject Treatments

In the within-subject treatments we find evidence of hysteresis. Specifically, we observe
a large and immediate jump in cooperation as N changes from N = 4 to N = 2, and no
initial response as N moves in the opposite direction. This suggests that in the short run,
subjects respond to a change in the environment with a strong intent to cooperate: coop-
eration rates of the within-treatment subjects in supergame 11 are significantly greater
than the initial cooperation rates in supergame one.

Further examination of Figure 3(A) suggests greatly similar patterns in behavior of within-
treatment subjects in the first ten and the last ten supergames. With N = 4 cooperation is
initially high, but then falls rapidly as the subjects gain experience. With N = 2 the coop-
eration trends upward with each additional supergame. However, closer look at the lev-
els of cooperation highlights differences between the two treatments. With no experience
at all in the environment, 43.2 percent of subjects cooperate for N = 2 in the first round
of the first supergame, compared to 29.4 percent for N = 4 (significantly different with
p = 0.005 from a test of proportions). In contrast to the significant difference over N in
the very first decision, in supergame 11 of our within-subject sessions (with prior experi-
ence at an alternate value of N ) the initial cooperation rates at N = 2 and N = 4 are indis-
tinguishable from one another in the plotted figure (at 60.0 and 59.7 percent cooperation,
respectively), let alone statistically (p = 0.974).B.1 We conclude that experience at another
parameter value in the first half causes both treatments’ cooperation rates to increase.

In Table B.1 we provide additional details, where we compare behavior of within- and
between-treatment subjects after five rounds of experience. In the first two columns we
present average behavior of between-treatment subjects (initial/ongoing cooperation and
success, with subject-clustered standard errors for the individual choices) in supergames
6–10 for N = 2, N = 4. In the next two columns we present average behavior of within-
treatment subjects in supergames 16–20. Examining the differences across the within and
between cooperation levels, we find (i) no statistically significant differences in behavior
forN = 4 (p = 0.117/p = 0.539 for initial/ongoing cooperation), (ii) statistically significant
differences across theN = 2 cooperation rates (p = 0.011 for initial, p < 0.001 for ongoing).
The significant differences reflect the substantially greater upward shift in the 4 → 2
treatment.

In the last three columns, we compute (for three different cases) the differences in average
behavior between treatments with N = 4 and N = 2. In column ∆Btwn we calculate the
between-subject change using data from the X = $9 treatment in supergames 16–20.B.2

In the last two columns we present the within-subject change using data from the 2→ 4
and 4→ 2 treatments in supergames 6–10 and 16–20. While the three measures agree
qualitatively—and exhibit economically large effects in N in the same direction—there

B.1Given the disjoint subject groups and identical treatment in supergames 1–10, we compare proportions
using t-tests without clustering. We then compare the initial response under each value of N in the within-
subject supergame eleven to all subjects at thatN in supergame one. Using these tests, we reject equivalence
with p = 0.021 for N = 2 and p < 0.001 for N = 4.
B.2These results are analogous to the marginal effects attributable to an increase in the independent basin
of ∆p?Ind. = +0.36 in Table 3 once we remove the X = $1 treatments.
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Table B.1. Cooperation: between vs. within

Between (SG 6–10) Within (SG 16–20) ∆Btwn. ∆Wthn.

N = 2 N = 4 N = 2 N = 4 2→ 4 4→ 2

Initial coop. 0.474
(0.036)

0.139
(0.025)

0.643
(0.056)

0.214
(0.041)

−0.469
(0.060)

−0.260
(0.042)

−0.504
(0.056)

Ongoing coop. 0.299
(0.026)

0.054
(0.012)

0.598
(0.051)

0.042
(0.016)

−0.444
(0.055)

−0.258
(0.029)

−0.544
(0.050)

Initial success 0.474 0.011 0.643 0.042 -0.503 -0.433 -0.632
Ongoing success 0.299 0.004 0.598 0.008 -0.450 -0.292 -0.594

Note: Comparisons at the same experience level are generated using supergames 6–10 across all sessions
(fixing N , between and within sessions are identical until supergame 11). For the within change we mea-
sure the cooperation rates in supergames 16–20. All cooperation rates are raw proportions (with subject-
clustered standard errors). The last three columns measure the corresponding cooperation rate whenN = 4
minus the cooperation rate when N = 2.

are differences, particularly in the comparisons to the 2 → 4 case. However, we note
that there are two effects at play here. In the 2 → 4 comparison, reduced magnitudes
are driven primarily by the fact that behavior in this treatment has not converged. To
see this, consider the assessed between-subject effect if we used data from supergames
6–10: a -33.5 percentage point effect on initial cooperation, which is not significantly
different from the -26.0 percent effect identified in the within comparison (p = 0.117).B.3

In contrast, the greater assessed effect in the 4 → 2 comparison is the composite of the
same reduction in the effect from looking at the still-converging data for N = 4, with a
substantial increase in cooperation at N = 2 in the second half over the between-subject
levels.

B.3Similarly for ongoing cooperation the between-effect assessed in supergames 6–10 is -24.6 percent com-
pared to -25.8 percent within (p = 0.539).
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Appendix C. Interface Screenshots

(a) Action Selection

(b) Round Feedback

(c) Supergame Feedback

Figure C.1. Interface screenshots
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Appendix D. Provided Instructions

Below we include the instructions given to participants. All language deltas/treatment-
specific language are included in braces. Text in red is for the N = 2 treatment, in blue
for the N > 2 treatments (here we provide the N = 4 implementation, where N = 10 has
only minor changes). In green we provide the payoff text for X = $9, in orange for X = $1.
Separate instructions for {Part two} are given to treatments in which N changes within
a session. In the chat(1/2) treatment, the only changes are for the critical die rolls in the
Study Organization & Payment section, where the supergame cutoff changes from 75 to 50.
In the extension treatment in which only two of four players are needed for an Success
signal, the description in the Round Choices and Payoffs are adjusted to accommodate the
change.
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Instructions

Welcome. You are about to participate in a study on decision-making. What you earn
depends on your decisions, and the decisions of others in this room. Please turn off your
cell phones and any similar devices now. Please do not talk or in any way try to commu-
nicate with other participants. We will start with a brief instruction period. During the
instruction period you will be given a description of the main features of the study. If
you have any questions during this period, raise your hand and your question will be an-
swered in private at your computer carrel.

Study Organization & Payment.

• The study has two Parts, where each Part has 10 decision-making Cycles. Each
Cycle consists of a random number of Rounds where you make decisions.

• At the end of the study, one of the two Parts will be selected for payment with
equal probability. For the selected Part, one of the 10 Cycles will be randomly
selected for payment. Your payment for this randomly selected Cycle will be based
on your decision’s in that Cycle’s last Round.

• The number of Rounds in each Cycle is random, where only the last Round in each
Cycle counts for payment. Which Round is the last is determined as follows:

– In every Round, after participants make their decisions, the computer will
roll a fair 100-sided die. If the die roll is greater than 75 (so 76–100) the
round just completed is the one that is used to determine the current Cycle’s
payment, and the Cycle ends. If instead the computer’s roll is less than 75 (so
1– 75) then the Cycle continues into another Round.

– Because of this rule, after every Round decision there is a 25 percent chance
that the current Round is the ones that count for the Cycle’s payment, and a
75 percent chance that the Cycle continues and the decisions in a subsequent
round will count for that Cycle payment.

• Your final payment for the study will be made up of a $6 show-up fee, and your
payment from the last Round in the randomly selected Cycle.

Part 1.

• In the first part of the study you will make decisions in 10 Cycles. In each Cy-
cle you will be matched with {another participant}{a group of three other partic-
ipants} in the room for a sequence of Rounds. You will interact with the same
{other participant}{group of three other participants} in all rounds of the cycle.

• Once a Cycle is completed, you will be randomly matched to a new {partici-
pant}{group of three participants} for the next Cycle.

• While the specific {participant}{participants} you are matched to is fixed across all
Rounds in the Cycle, the computer interface in which you make your decisions is
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anonymous, so you will never find out which participants in the room you inter-
acted with in a particular Cycle, nor will others be able to find out that they inter-
acted with you.

Round Choices and Payoffs. For each Round in each Cycle, you and the matched {par-
ticipant}{participants in your group} will make simultaneous choices. {Both}{All four} of
you must choose between either the Green action or the Red action. After you and the
other {participant}{three participants} have made your choices, you will be given feed-
back on the {other participant’s}{other participants’} choices that Round, alongside the
Computer’s die roll to determine if that Round counts for the Cycle payment.

If a particular Round is the Cycle’s last, and that Cycle is the one selected for final pay-
ment, there are four possible payoff outcomes.

(i) If both you and {the other participant}{all three of the other participants} choose
the Green action, you get a round payoff of $20.

(ii) If you choose the Green action and {the other participant chooses}{any of the other
participants choose} Red, you get a round payoff of {$2}{$10}.

(iii) If you choose the Red action and {the other participant chooses}{all of the three
other participants choose} Green, you get a round payoff of {$29}{$21}.

(iv) If both you and {the other participant}{any of the other three participants} choose
the Red action, you get a round payoff of $11.

These four payoffs are summarized in the following table:

Other {Participant’s Action:}{Participants’ Actions:}
{Green}{All 3 Green} {Red}{Any of 3 Red}

Your Action: Green $20 {$2}{$10}
Red {$29}{$21} $11

Some examples of these payoffs:

Case 1. Suppose you choose Green and {the other participant}{all three of the other par-
ticipants} in the Cycle also choose Green. If that Round is the final one in the Cycle
{both}{all four} of you would get a payoff of $20.

Case 2. Suppose {you}{you and two of the other participants} choose Green while the
other participant chooses Red. If that Round is the final one in the Cycle {you}{you and
the other two participants who chose Green} would get a payoff of {$2}{$10}, while the
other participant would get a payoff of {$29}{$21}.

Case 3. Suppose you chooseRed while {the other participant chooses}{all three of the
other participants choose} Green. If that Round is the final one in the Cycle you would
get a payoff of {$29}{$21}, while the other {participant}{three participants} would get a
payoff of {$2}{$10}.

Case 4. Suppose you and {the other participant choose Red.}{another participant choose
Red while the other two participants choose Green.} If that Round is the final one in the
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Cycle {you}{you and the other participant that chose Red} would get a payoff of {$11}{$11,
while the other two participants would get a payoff of{$2}{$10}} .

Part 2. After Part 1 is concluded, you will be given instructions on Part 2, which will have
a very similar structure to the task in Part 1.

{END OF PART 1 HANDOUT}

Part 2 Instructions {Between Only, handed out Supergame 11}. Part 2 is identical to
Part 1. In each of the 10 Cycles in Part 2 you will again be matched to {another partici-
pant}{three other participants} in the room.

Similar to Part 1, the Cycle payoff is determined by the last round in the Cycle, where the
payoff depends on the action you chose and the {action chosen by the matched partici-
pant}{actions chosen by the three matched participants} for that Cycle. Similar to Part 1,
the below Table summarizes the payoff based upon the choices made in the Cycle’s last
round.

Other {Participant’s Action:}{Participants’ Actions:}
{Green}{All 3 Green} {Red}{Any of 3 Red}

Your Action: Green $20 {$2}{$10}
Red {$29}{$21} $11

{END OF PART 2 HANDOUT}

Part 2 Instructions {Within Only, handed out Supergame 11}. Part 2 is very similar to
Part 1. However, in each of the 10 Cycles in Part 2 you will instead be matched to three
other participants in the room for each Cycle.

Similar to Part 1, the Cycle payoff is determined by the last round in the Cycle, where
the payoff depends on the action you chose and the actions chosen by the three matched
participants for that Cycle. If a particular Round is the Cycle’s last, and that Cycle is the
one selected for final payment, there are four possible payoff outcomes.

(i) If both you and all three of the other participants choose the Green action, you get
a round payoff of $20.

(ii) If you choose the Green action and any of the other participants chooses Red, you
get a round payoff of $2.

(iii) If you choose the Red action and all three other participants choose Green, you
get a round payoff of $29.

(iv) If both you and any of the other three participants choose the Red action, you get
a round payoff of $11.

These four payoffs are summarized in the following table:

Other Participant’s Action:
All 3 Green Any of 3 Red

Your Action: Green $20 $2
Red $29 $11
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Some examples of these payoffs:

Case 1. Suppose you choose Green and all three of the other participants in the Cycle
also choose Green. If that Round is the final one in the Cycle all four of you would get a
payoff of $20.

Case 2. Suppose you and two of the other participants choose Green while the other
participant chooses Red. If that Round is the final one in the Cycle you and the other two
participants who chose Green would get a payoff of $2, while the other participant would
get a payoff of $29.

Case 3. Suppose you choose Red while all three of the other participants choose Green.
If that Round is the final one in the Cycle you would get a payoff of $29, while the other
three participants would get a Round payoff of $2.

Case 4. Suppose you and another participant choose Red while the other two participants
choose Green. If that Round is the final one in the Cycle you and the other participant
that chose Red would get a payoff of $11, while the other two participants would get a
payoff of $2.

{END OF PART 2 HANDOUT}

Part 2 Instructions {Chat Only, handed out Supergame 11}. Part 2 is identical to Part 1
except for the beginning of each cycle where we will now allow the matched participants
to chat to one another before the cycle begins. In each of the 10 Cycles in Part 2 you will
again be matched to three other participants in the room.

Similar to Part 1, the Cycle payoff is determined by the last round in the Cycle, where
the payoff depends on the action you chose and the actions chosen by the three matched
participants for that Cycle. Similar to Part 1, the below Table summarizes the payoff
based upon the choices made in the Cycle’s last round.

Other Participants’ Actions:
All 3 Green Any of 3 Red

Your Action: Green $20 $2
Red $29 $11

In contrast to Part 1 though, at the beginning of each new cycle, a chat window will be
given to you, which will stay open for two minutes, or until all group members close it.

You may not use the chat to discuss details about your previous earnings, nor are you
to provide any details that may help other participants in this room identify you. This
is important to the validity of this study and will be not tolerated. However, you are
encouraged to use the chat window to discuss the upcoming Cycle.

If at any point within the two-minute limit you wish to leave the chat, you can click the
“Finish Chat” button. The other participants will be informed that you left.

{END OF PART 2 HANDOUT}

11



Appendix E. Strategies and the selection index

In the infinitely repeated prisoner’s dilemma (RPD) the set of possible strategies is very
large. However, the survey/meta-study of RPD lab experiments of Dal Bó and Fréchette
(2018) shows that a small set of strategies rationalizes choices well for a large number of
parameterizations. The five strategies that capture most choices are: (i) always cooper-
ate, (ii) always defect; and three strategies in which cooperation is conditional, (iii) grim
trigger, (iv) tit for tat, and (v) suspicious tit for tat. The difference between tit for tat and
suspicious tit for tat takes place only in the first interaction, where tit for tat starts with
cooperation and suspicious tit for that starts with defection. In subsequent rounds, both
strategies cooperate if there the signal is that the other cooperated and defect otherwise.

The selection index that is used in the RPD literature and in this paper focuses on two
strategies: always defect and grim trigger. A first reason to focus on these two strategies
is that they capture the two very distinct types of behavior that may be supported in
equilibrium, non-cooperative and conditionally cooperative behavior. There is one non-
cooperative strategy that is a subgame-perfect equilibrium (always defect), but there are
many conditionally cooperative strategies that depending on δ can be subgame perfect.
However, amongst the set of strategies that empirically rationalizes the data, grim trigger
is the only conditionally cooperative strategy that is subgame perfect. Tit for tat is a Nash
equilibrium of the supergame, but there can be incentives to deviate from the punishment
path. In addition, notice that if one selects two strategies and one is always defect, then
selecting grim trigger or tit for tat for the other, does not change the path of play when
combining these strategies. If one subject uses always defect and the other uses tit for
tat, the outcome is cooperation in the first round and defection from the second round
on, which is exactly what would happen if the other subject used grim trigger instead.
Meanwhile, if both subjects were to use tit for tat, the outcome is cooperative in every
round, which is also what would happen if both subjects used the grim trigger instead.
In some sense there is little loss in focusing solely on the grim trigger as the conditionally
cooperative strategy.

The main purpose of this appendix is to show that constraining to the five strategies
identified as focal in Dal Bó and Fréchette (2018) also extends to our setting. The appen-
dix starts with a brief description of the Strategy Frequency Estimation Method (SFEM),
which was introduced in Dal Bó and Fréchette (2011).E.1 From a big-picture perspective,
the method takes the choices made by subjects and contrasts them against the choices that
each strategy in a set of given strategies would have made had subject been using each of
these other strategies. Using a mixture model that allows for errors in choices, the pro-
cedure reports the proportion of choices that are better rationalized by each strategy. In
other words, the procedure works by inferring strategies that better rationalize choices.
Dal Bó and Fréchette (2019) use an alternative procedure to study strategies, in particu-
lar, an experimental design that essentially familiarizes subjects with a set of strategies so
that in the end subjects end up selecting a strategy directly to be implemented to make

E.1Further details on the procedure are available in the online appendix of Embrey, Fréchette, and Stac-
chetti (2013), and a Monte-Carlo-style analysis was also performed in Fudenberg, Rand, and Dreber (2010).
The procedure has also been used to study strategies in other repeated-game experiments, for example,
Aoyagi, Bhaskar, and Fréchette (2019), Vespa (2020), and Vespa and Wilson (2020).
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choices for them. They contrast this elicitation procedure where the role of strategies is
explicit to the strategies inferred from choices by the SFEM. They find consistency across
the two methods.

Strategy Frequency Estimation Method. The goal of the procedure is to recover φk,
which represents the frequency attributed to strategy k in the data. To illustrate how the
procedure works, consider a set of strategies K that subjects may follow. Let digr (h) be the
choice of subject i and kigr (h) the decision prescribed for that subject by strategy k ∈ K
in round r of supergame g for a given history h. Strategy k is a perfect fit for round r if
digr (h) = kigr (h). The procedure models the probability that the choice (d) corresponds to
the prescription of strategy k as:

(4) Pr
(
digr (h) = kigr (h)

)
=

1

1 + exp
(
−1
γ

) = β.

In Equation (4), γ > 0 is a parameter to be estimated. One interpretation of Equation
(4) is that subjects can make mental errors in the implementation of a strategy, with β
capturing the probability that the subject does not make such an error. To provide some
intuition it is useful to consider the limit values of β. On the one hand, as γ → 0, β→ 1
and the fit is perfect. On the other hand, as γ →∞, β→ 1

2 . In this case, the estimate of γ
is so high that the prediction of the model is no better than a random draw.

With the specification for the mental error in Equation (4), the procedure uses maximum
likelihood to estimate the frequency of strategy k in the data (φk) and parameter γ . Let yigr
be an indicator that takes value one if the subject’s choice matches the decision prescribed
by the strategy. Since Equation (4) specifies the probability that a choice in a specific
period corresponds to strategy k, the likelihood of observing strategy k for subject i is
given by:

(5) pi (k) =
∏
g

∏
r

βy
i
gr (1− β)1−yigr .

Aggregating over subjects we get:
∑
i ln(

∑
kφkpi (k)).E.2 The procedure maximizes the

likelihood function to obtain estimates for γ and the frequencies φk.
E.3

An example may serve to clarify some aspects of the approach. Consider a case in which
the set of included strategies is always defect (All D) and always cooperate (All C). The
fit will be good (high β) if the population is composed of subjects who either almost
always select D or almost always select C. The estimated frequency φAll D would be the
maximum likelihood estimate of the proportion of subjects who almost always select D.
If a large proportion of subjects shifts between C and D within the supergame, neither

E.2To construct pi(k), consider a subject who is implementing the prescriptions of strategy k with mistake
rate given by 1− β. The case that the subject’s choice matches the prescription (yigr = 1) would be observed
with probability β. If yigp = 0, then the subject’s choice does coincide with the one prescribed by the strategy.
E.3Since

∑
kφk = 1, the procedure provides |K| − 1 estimates and the |K|-th strategy is computed by differ-

ence. The procedure also estimates γ . Following Equation (4) there is a one-to-one mapping between γ
and β, so we will refer to the estimate of γ directly as an estimate of β.
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strategy would accommodate their choices and the procedure will rationalize it with a
low estimate of β.

The method depends on the pre-specified set K of included strategies. The information
that subjects receive at the end of each round in our environments with N > 2 is similar
to the information that subjects receive in an indefinitely repeated prisoner’s dilemma.
The reason is that subjects do not learn the specific choices of others, but an aggregate
signal: either enough other people cooperated (a success) so that a cooperative outcome
depended on their own choice or not. Because the history information is similar, we will
focus on the same set of five strategies identified in Dal Bó and Fréchette (2007) and
in fact, as we will show later, these five strategies are enough to obtain relatively high
goodness of fit estimates (as captured by β).

Strategy Estimation: Results. In this section, we present results of the strategy estima-
tion method. We divided the 20 supergame session into three parts. The last part consists
of the last seven supergames, and the first part consists of the first seven supergames. We
will first show estimates for the last supergames of the session and later provide results
for the first supergames of the session.E.4

Final Supergames. Table E.1 presents the estimation results for each of our nine treat-
ments. For each treatment and each of the five strategies the table reports the estimate
and (whenever possible) the bootstrap-estimated standard errors.E.5 The table also re-
ports the β estimates that derive from the estimate of γ and the observations used in each
estimation.E.6

Finally, the table reports goodness-of-fit estimates for a model in which we reduce the set
of included strategies. β† corresponds to the β estimate when we exclude tit for tat and
suspicious tit for tat. In this case, the only conditional-cooperation strategy in the set is
the grim trigger. Since the model uses maximum likelihood and the restricted model is
nested, we use a likelihood-ratio test to evaluate the null hypothesis that the restriction
does not bind. The row with the heading ‘p-value†’ reports the p-value corresponding to
the test. The last two rows (referenced with ‡) perform a similar exercise but when the
set of included strategies involves only always cooperate and always defect; that is, there
are no history-dependent strategies included in this case.

A first observation is that all goodness-of-fit measures (the β estimates) are quite high.
All estimates are at around 0.9 or higher. This indicates that five included strategies do a
good job of rationalizing the data in all treatments. We now describe the results treatment
by treatment.

E.4The results that we report qualitatively do not depend on having seven supergames among the early
and late samples. The focus on seven is intended for two reasons. First, it allows for six supergames in
between, so that it is possible to see if behavior early on changes relative to behavior much later in the
session. Second, there is enough data in each seven-supergame sample.
E.5Recall that the procedure recovers standard errors for all the strategies but one. (See footnote E.3 for
details).
E.6Observations for the chat treatment with δ = 1

2 are lower than in other treatments because in this case
with a higher termination probability after each round, supergames are shorter.
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In the treatment that corresponds to an indefinitely repeated prisoner’s dilemma
(
N=2
X=$9

)
,

the strategies that carry most of the mass involve always defect (45.2 percent) and grim
trigger (28.9 percent). There is, however, a non-negligible yet not-significant mass cap-
tured by tit for tat (18 percent). In the estimation that excludes tit for tat and suspicious
tit for tat, there is a small reduction in terms of goodness of fit: from 0.929 to 0.912,
which indicates that including only the Grim-Trigger strategy for conditional cooperation
does not lead to the dataset to be rationalized with substantial additional error. However,
the p-value of the likelihood ratio test in this case rejects the null, so that the restriction
does impose a loss from that perspective. As a comparison reference, we point out that
a SFEM estimation that only includes always cooperate and always defect, does lead to a
relatively large decrease in the goodness of fit, which decreases from 0.929 to 0.804 (in
β‡). In this case, the null in the likelihood ratio test is also rejected, but the increase in
terms of the noise component needed to rationalize the data in this case is substantially
larger relative to the case where the grim trigger is also included (β†).

The
(
N=4
X=$9

)
treatment is the treatment with the least amount of cooperation and the es-

timation reflects it. About a third of the mass corresponds to always defect and the rest
essentially corresponds to suspicious tit for tat, a strategy that starts by defecting. In this
case, the goodness-of-fit measure is extremely high (at 0.981) and essentially there is no
loss when the estimation excludes tit for tat and suspicious tit for tat, as the β† is un-
changed up to the third decimal. Moreover, the likelihood ratio test does not reject the
hypothesis that the constrained model is not restrictive.

The treatment with highest degrees of initial cooperation in our data is
(
N=4
X=$1

)
, and little

less than a quarter of the data is consistent with always cooperate. While this suggests
a relatively large amount of unconditional cooperation, we point out that in this dataset
we cannot distinguish between always cooperate and conditional cooperative strategies if
the subjects do not experience others defecting.E.7 The broader evidence, however, sug-
gests that when cooperation takes place is conditional given that in treatments with more
frequent defection there is essentially no evidence of large amounts of unconditional co-
operation. In fact, in this treatment the most popular strategy is tit for tat, capturing
more than 50 percent of the mass. There is also a close to 20 percent that corresponds
to always defect. We note that while the likelihood ratio test in this case rejects the null
that eliminating tit for tat and suspicious tit for tat is not restrictive, the loss in terms of

E.7While a strategy in an infinitely repeated game specifies what to do at each possible decision node (an
infinite-dimensional object), the observed set of choices for a subject correspond to a specific path of play.
To increase possible identification Vespa (2020) uses a one-period-ahead strategy method (OASM) in which
subjects make choices in round r without knowing what the other did in round r-1. That is, the subject
makes a choice in round r for each possible choice that the other could have taken in round r-1. After
making these choices, the subject learns the actual history of play for round r-1, and their choice for round r
is implemented for the actual choice that the other took in round r-1. In this way, it is possible to retrieve in
an incentivized manner choices that subjects would have made off the path of play. Implementing OASM is
costly particularly in terms of time with instructions, but also because it reduces the number of supergames
that subjects can reasonably play within a session given that they must make more decisions per round.
Since the goal of the current paper does not lie in identifying strategies, we decided not to include it in our
design.
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goodness-of-fit is rather small. Specifically, the goodness of fit drops from 0.939 to 0.931.
The drop in goodness of fit is much larger when grim trigger is also excluded. The β‡ co-
efficient is at 0.840, a relatively much larger drop from 0.939.

In the last core treatment in our dataset
(
N=10
X=$1

)
all strategies for which standard errors

can be computed have statistically significant estimates. About a quarter of the mass cor-
responds to always defect and slightly above ten percent for always cooperate. Grim trig-
ger, tit for tat and suspicious tit for tat account for close to 60 percent of the mass jointly.
However, when the estimation excludes tit for tat and suspicious tit for tat, the goodness-
of-fit estimate does not change up to the third decimal and remains at a relatively high
level. Consistent with this, the likelihood ratio test does not suggest that the restriction
leads to a loss.

Overall, we now summarize the main takeways from the perspective of focusing on al-
ways defect and grim trigger in the index measure:

• The estimates in the four core treatments that are used to test the extensions of the
basin suggest that focusing on these two strategies does not lead to a substantial
loss. Either because a likelihood ratio test directly points towards the restriction
not binding or because when it binds the relative loss is small (as measured by the
goodness-of-fit estimates).

• Meanwhile, when the estimation is further restricted to exclude grim trigger, in all
treatments we see that the likelihood ratio test indicates that the restriction does
bind and in most cases it in fact leads to a relatively large loss in goodness of fit.

We now discuss the estimates for our extension treatments. Treatment (N = 2 to 4/X =
$9) the last seven supergames correspond to a part of the session where N = 4, so that
estimates can be compared to treatment (N = 4/X = $9). The estimates in this treatment
are noisier (relative to other treatments), which is likely due to the fact that subjects are
not as experienced with this environment in the within treatment relative to (N = 4/X =
$9), where by supergame 14 subjects had experienced ten supergames more with this
parameterization by this point.E.8 However, the big picture is similar. First, there is a
very small reduction in the goodness-of-fit estimate when the set of strategies excludes
tit for tat and suspicious tit for tat (from 0.950 to 0.948).E.9 Second, most subjects appear
to use strategies that are captured either by directly not cooperating (always defect) or by
starting in a non-cooperative manner (suspicious tit for tat).

In the second half of the session, treatment (N = 2 to 4/X = $9) as shown in Figure 3(A),
shows a slow adjustment towards the low cooperation rates seen in (N = 4/X = $9). This
is a treatment where in the first half of the sessionN = 2 and by the last seven supergames
with N = 4 cooperation rates are lower, but the reduction takes place at a slow pace. In
this case, the restriction that excludes both tit for tat strategies leads to a larger loss in

E.8In fact, the estimates for (N = 2 to 4/X = $9) in Table E.1 are closer to the estimates for treatment (N =
4/X = $9) using the first seven supergames, which are reported in Table E.2. In both cases, the largest mass
corresponds to always defect (around sixty percent) and the next strategy in popularity is suspicious tit for
tat.
E.9The likelihood ratio test also leads to the same result using a 95 percent confidence level.
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goodness-of-fit relative to other treatments, from 0.921 to 0.883. However, additionally
excluding grim trigger leads to a much larger loss, with β‡ at 0.819.

We conclude that both within treatments share some similar features with the corre-
sponding between treatments in their second half, but there is an adjustment given that
the first ten supergames displayed different primitives and the adjustment is also re-
flected in the SFEM estimates.

Both chat treatments were conducted with the same background primitives (N = 4/X =
$9) and in the chat treatment that keeps δ = 3

4 , there is a large difference relative to
(N = 4/X = $9), where no such communication was available. With chat, grim trigger and
tit for tat strategies essentially capture almost all the mass. This is consistent with the
large cooperation rates that were documented in this case. The other side of this is that
the coefficients of always defect and the conditional cooperation strategy that stats by
defecting (suspicious tit for tat) are at zero, while they essentially captured all the mass
in (N = 4/X = $9).

A big shift happens when there is chat and δ = 1
2 . In this case, always defect captures more

than sixty percent of the mass and Suspicious Tit for Tat adds another 11 percent. In other
words, these findings are consistent with what we reported in the text, meaning that even
if coordination is eased in this treatment, supporting cooperation is very difficult.E.10

The final extension treatment corresponds to primitives (N = 4/X = $9), but where only
two players are needed for cooperation to result. Consistent with our reports in the text,
the strategy that captures most of behavior in this treatment is always defect, with close
to three-quarters of the mass. Hence, the evidence from the SFEM is consistent with the
fact that cooperation in this treatment is quite unlikely despite the fact that the number
of players needed for a cooperative outcome is smaller than N .

Early Supergames. We conclude this section of the appendix by describing SFEM esti-
mates for the first seven supergames; essentially a period of the session in which learning
is more likely to be taking place. Results for all treatments are presented in Table E.2.

Starting with our four core treatments, a first observation is that the goodness-of-fit esti-
mates (β) are still quite far from random, with the smallest at 0.812. This suggests that
even if constrained to few strategies, most of the data can be rationalized by the small
set. However, there is a large gain in goodness-of-fit estimates when we when compared
to the last seven supergames, described earlier and reported in Table E.1. In all four cases
the drops are relatively large in magnitude, with the smallest involving a reduction from
0.929 to 0.874 and the largest from 0.934 to 0.812. This suggests that as subjects gather
experience, their behavior becomes more consistently captured by the five strategies in-
cluded in the estimation.

Second, comparing between the first seven supergames and the last seven supergames
the broad picture treatment by treatment is not very different. There can be adjustment
in terms of what strategy best captures behavior, but the changes do not appear to be

E.10While there is a non-negligible mass for Grim Trigger, any time a subject playing that strategy is
matched with a subject playing always defect or suspicious tit for tat, will end up defecting in round 2.
Given the high estimates for these two strategies, the likelihood of long-term cooperation is very small.

17



T
a
b
l
e
E
.
1
.

SF
E

M
ou

tp
u

t:
la

st
se

ve
n

su
p

er
ga

m
es

St
ra

te
gi

es
( N=2 X

=
$9

)
( N=4 X

=
$9

)
( N=4 X

=
$1

)
( N=1

0
X

=
$1

)(
N

=
2→

4
X

=
$9

)( N
=

4→
2

X
=

$9

)(
N

=
4

X
=

$9

)
( N=4 X

=
$9

)
( N=4 X

=
$9

)
C

ha
t

C
ha

t,
δ

=
1 2

Su
cc

es
s

if
2

C
oo

p

A
ll

C
0.

01
7

0.
00

0
0.

23
1?

0.
13

3?
?
?

0.
01

4
0.

07
3

0.
08

3
0.

01
6

0.
01

7
(0

.0
24

)
(0

.0
09

)
(0

.1
24

)
(0

.0
46

)
(0

.0
18

)
(0

.0
70

)
(0

.0
70

)
(0

.0
22

)
(0

.0
31

)

A
ll

D
0.

45
2?
?
?

0.
31

3?
?
?

0.
18

2?
?

0.
26

5?
?
?

0.
54

9
0.

21
8?
?

0.
00

0
0.

61
3?
?
?

0.
73

5?
?
?

(0
.1

54
)

(0
.0

10
)

(0
.0

9)
(0

.0
17

)
(0

.2
40

)
(0

.0
75

)
(0

.0
03

)
(0

.1
18

)
(0

.0
65

)

G
ri

m
tr

ig
ge

r
0.

28
9?
?

0.
00

9
0.

04
6

0.
09

4?
?
?

0.
18

5?
?

0.
14

0?
0.

66
9?
?

0.
26

2?
?
?

0.
10

1?

(0
.1

23
)

(0
.0

10
)

(0
.1

26
)

(0
.0

25
)

(0
.1

27
)

(0
.0

85
)

(0
.2

81
)

(0
.0

92
)

(0
.0

57
)

T
it

fo
r

ta
t

0.
18

0
0.

00
9

0.
53

5?
?
?

0.
09

4?
?
?

0.
00

0
0.

45
8?
?
?

0.
24

8
0.

00
0

0.
14

8?
?

(0
.1

12
)

(0
.0

10
)

(0
.1

51
)

(0
.0

25
)

(0
.0

63
)

(0
.0

86
)

(0
.3

00
)

(0
.0

09
)

(0
.0

61
)

Su
sp

ic
io

u
s

ti
t

fo
r

ta
t

0.
06

3
0.

67
0

0.
00

6
0.

41
4

0.
25

2
0.

11
1

0.
00

0
0.

11
0

0.
00

0

β
0.

92
9

0.
98

1
0.

93
9

0.
93

4
0.

95
0

0.
92

1
0.

97
5

0.
87

3
0.

89
9

#
O

bs
er

va
ti

on
s

1,
36

0
1,

32
0

1,
63

2
1,

50
0

1,
29

6
1,

30
4

1,
56

0
88

4
1,

15
2

β
†

0.
91

2
0.

98
1

0.
93

1
0.

93
4

0.
94

8
0.

88
3

0.
97

4
0.

87
1

0.
89

6
p

-v
al

u
e†

<
0.

00
0

1.
00

0
<

0.
00

0
1.

00
0

0.
09

6
<

0.
00

0
0.

04
1

0.
59

7
0.

00
3

β
‡

0.
80

4
0.

97
8

0.
84

0
0.

89
7

0.
89

5
0.

81
9

0.
88

3
0.

80
9

0.
86

3
p

-v
al

u
e‡

<
0.

00
0

<
0.

00
0

<
0.

00
0

<
0.

00
0

<
0.

00
0

<
0.

00
0

<
0.

00
0

<
0.

00
0

<
0.

00
0

N
ot

e:
(i

)B
oo

ts
tr

ap
p

ed
st

an
d

ar
d

er
ro

rs
in

p
ar

en
th

es
es

.
L

ev
el

of
si

gn
ifi

ca
nc

e:
?
?
?

1
p

er
ce

nt
;?
?

5
p

er
ce

nt
;?

10
p

er
ce

nt
.

(i
i)
β
†

co
rr

es
p

on
d

s
to

th
e
β

es
ti

m
at

e
in

ca
se

ti
t

fo
r

ta
t

an
d

su
sp

ic
io

u
s

ti
t

fo
r

ta
t

ar
e

ex
cl

u
d

ed
.(

ii
i)

p
-v

al
u

e†
re

p
or

ts
th

e
p

-v
al

u
e

of
a

li
ke

li
ho

od
ra

ti
o

te
st

in
w

hi
ch

th
e

re
st

ri
ct

ed
m

od
el

ex
cl

u
d

es
ti

t
fo

r
ta

t
an

d
su

sp
ic

io
u

s
ti

t
fo

r
ta

t.
(i

v)
β
‡

co
rr

es
p

on
d

s
to

th
e
β

es
ti

m
at

e
in

ca
se

gr
im

tr
ig

ge
r,

ti
t

fo
r

ta
t,

an
d

su
sp

ic
io

u
s

ti
t

fo
r

ta
t

ar
e

ex
cl

u
d

ed
.

(v
)

p
-v

al
u

e‡
re

p
or

ts
th

e
p

-v
al

u
e

of
a

li
ke

li
ho

od
ra

ti
o

te
st

in
w

hi
ch

th
e

re
st

ri
ct

ed
m

od
el

ex
cl

u
d

es
gr

im
tr

ig
ge

r,
ti

t
fo

r
ta

t,
an

d
su

sp
ic

io
u

s
ti

t
fo

r
ta

t.

18



conceptually meaningful. For instance, in (N = 4/X = $9) the largest mass in the first
seven supergames corresponds to always defect (at 60 percent) and the second largest is
captured by suspicious tit for tTat (at 33.8 percent). In the last seven supergames, the
order is reversed, with 67 percent for suspicious tit for tat and slightly more than thirty
percent for always defect. In both cases, however, these two strategies jointly capture
more than ninety percent of the mass and both are strategies that start by selecting Defect.
That is, the odds of a second period in which there is a cooperative outcome when the
majority of the population plays one of these strategies is slim.

Perhaps a slightly different picture is painted by treatment (N = 10/X = $1), where the
coefficients for the first seven supergames suggest that close to fifty percent of the mass
corresponds to strategies that start by cooperating. This declines in the last seven su-
pergames where almost seventy percent of the mass corresponds to strategies that start
by defecting. This suggests that subjects in this treatment start by trying to cooperate but
in time learn to defect.

Moving to our extension treatments, we first note that (N = 2/X = $9) and (N = 2 to 4/X =
$9), which in the first seven supergames have the same parameterization have comparable
estimates for all strategies, and, in fact, goodness-of-fit estimates that coincide up until
the third decimal point. A similar picture emerges in the comparison between (N =
4/X = $9) and (N = 4 to 2/X = $9). The joint mass of strategies that start by defecting in
(N = 4/X = $9) is close to 94 percent. In (N = 4 to 2/X = $9), the number is 81 percent.
While the number is lower in the latter, in both cases share behavior is overwhelmingly
captured by strategies that are at least initially non-cooperative.

When we compare behavior in the first seven supergames of within treatments to behav-
ior in the last seven supergames, there can be large changes. In the first seven supergames
of (N = 2 to 4/X = $9), where N = 2 a mass of close to forty percent corresponds to strate-
gies that start by cooperating. Meanwhile, in the last seven supergames, where N = 4
eighty percent of the mass is captured by strategies that start by defecting. The change is
even more striking when N is reduced in the second half of the session. In the first seven
supergames of (N = 4 to 2/X = $9), slightly more than eighty percent of the mass corre-
sponds to strategies that start by defecting. However, in the last seven supergames (when
N is reduced to 2), only about a third of strategies start by defecting. This illustrates that
the patterns captured by the SFEM estimates are consistent with the patterns described
in the text.

An even larger change is documented between the beginning and end of the session in
chat treatments, where the possibility to exchange messages is only introduced in the sec-
ond half of the session. The first half of the session in (N = 4/X = $9) with chat is identi-
cal to treatment (N = 4/X = $9) and treatment (N = 4 to 2/X = $9). The estimates reflect
that with more than eighty percent of the mass corresponding to strategies that start by
defecting in all three treatments. However, as we reported earlier, the large masses that
correspond to always defect and suspicious tit for tat essentially disappear once chat is
introduced. In the case with δ = 1

2 there is an effect in the same direction, but of a much
19
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Figure E.1. Initial success rates in extensions (by supergame)

smaller magnitude. Initially, more than 90 percent of the mass being rationalized by al-
ways defect, but strategies that start by defecting capture close to three-quarters once
chat is introduced.

Finally, in the extension treatment where only two of four players are needed for a coop-
erative outcome we see some patterns that are common to most other treatments. For in-
stance, the goodness-of-fit estimates is higher in the last seven supergames. However, the
effect of learning is relatively smaller as the session evolves: most subjects use strategies
that start by defecting early and late in the session.
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